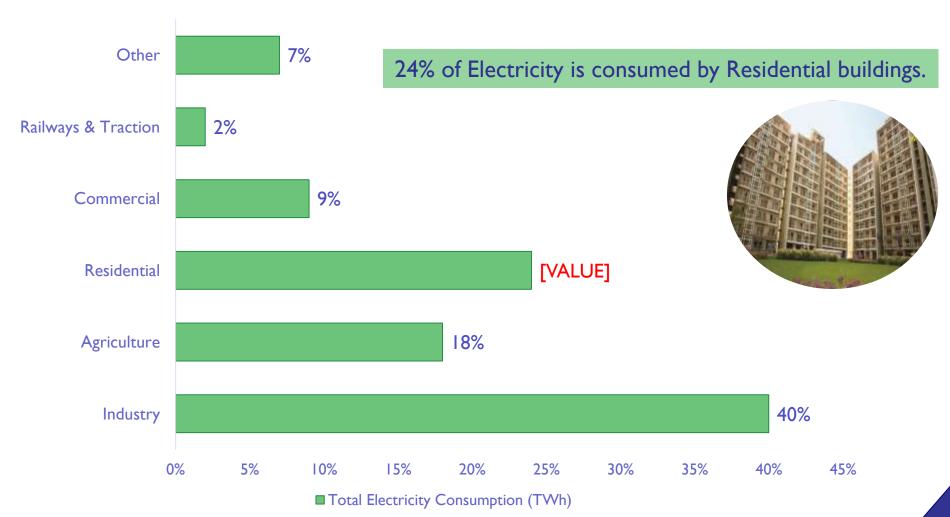
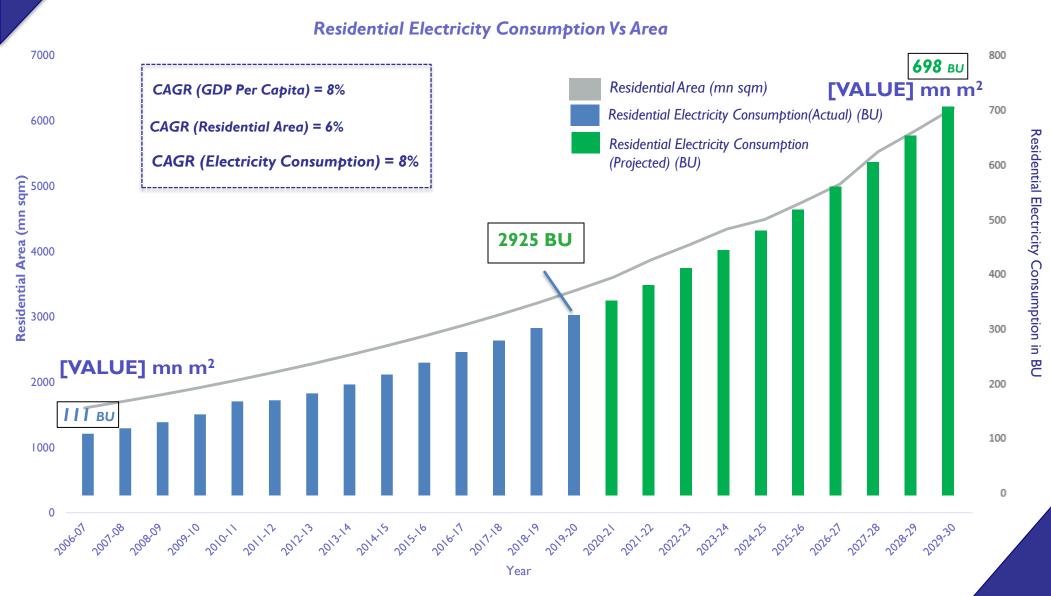


Energy Conservation Building Code for Residential Building Eco-Niwas Samhita 2018


Understanding of Eco-Niwas Samhita 2018

Electricity consumption pattern in India

TOTAL ELECTRICITY CONSUMPTION 1066 (BU) IN 2016-17

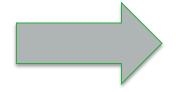


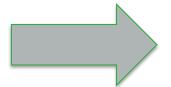
Source: Energy Statistics 2018

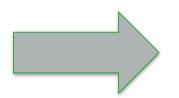
Building Sector - Built up area and electricity consumption projection

Introduction of Eco-Niwas Samhita 2018

Why Eco-Niwas Samhita has been created?


- Built Up Area India will add 3 Billion m² by 2030 of New residential building w.r.t Year 2018
- □ Energy Demand There is a 4 times increase in energy demand for residential units from 1996 2016
- ☐ Projections show energy demand will be approximately between 630 TWh and 940 TWh by 2032


Introduction of Eco-Niwas Samhita 2018

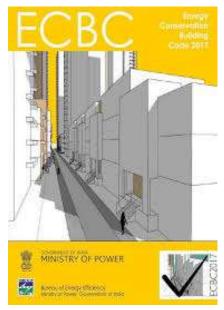

What is Eco-Niwas Samhita 2018?

ECO-Niwas Samhita 2018 - an Energy Conservation Building Code for Residential Buildings.

Launched on National Energy Conservation Day in 2018.

Applicable to all residential units with plot area ≥500m² (However, states and municipal bodies may reduce the plot area so that maximum residential buildings fall in the category of ENS compliance)

Other Existing Government initiatives

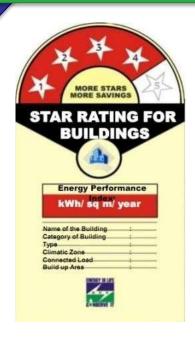

CBC Conservation (Helding)

Energy Conservation Building Code (ECBC)

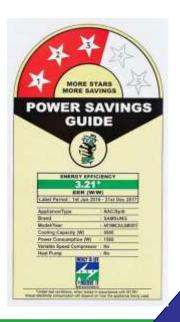
- The ECBC sets minimum energy performance standards for commercial buildings.
- ECBC defines norms of Energy performance for various building components and takes into consideration the climatic region.

Eco-Niwas Samhita 2018

Energy Conservation Building Code for Residential Buildings



Other Existing Government initiatives



BEE star rating programme for Office buildings.

BEE has developed a star rating programme for buildings which is based on the actual performance of a building in terms of its specific energy usage in kwh / m² / year. This programme rates commercial office buildings on the scale of I - 5 star, with
 5 Star labelled buildings being the most efficient.

BEE star rating programme for electrical appliance.

The star rating is a measure of energy efficiency of an appliance, it is
a five points scale where higher the rating, lower is the energy
consumed by appliance.

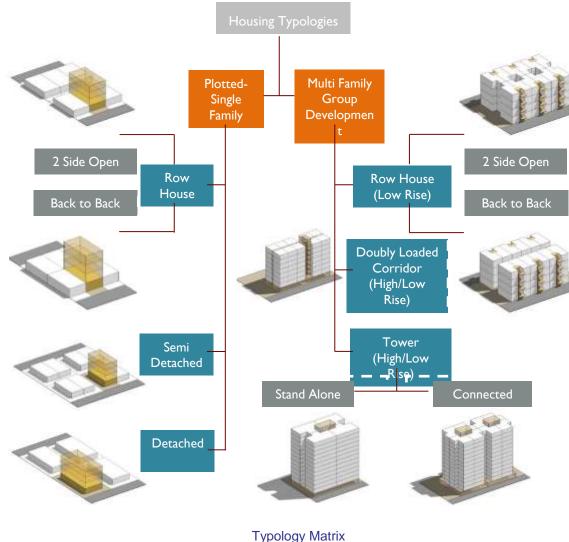
New Government initiatives

Policies & Regulations-Residential

- Eco-Niwas Samhita (ECBC-R) Part -I
- Star Rating for Buildings (Building Label)

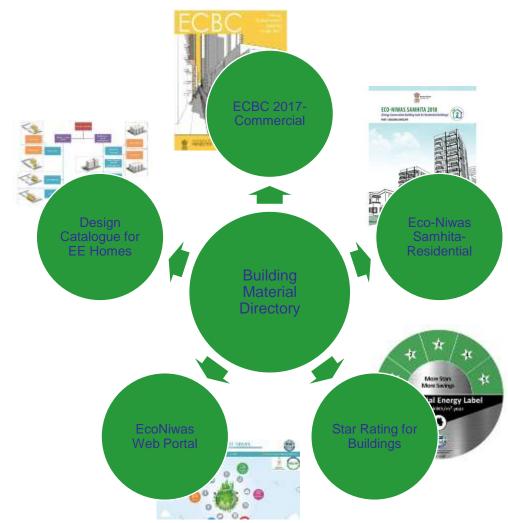
Supporting Government Initiatives

- Replicable Design Catalogue of EE Homes
- Energy Efficient Building Materials Directory
- ECONIWAS Web-Portal
- Smart Home Program
- Eco-Niwas Samhita (ECBC-R) Part -II



Replicable Designs for Energy Efficient Residential **Buildings**

- The project aims to develop a **Design Template** for building energy efficient homes, catering to:
 - Various residential types
 - Across different house sizes
 - In different climatic zones across India
- The focus of the project is to enable the user/ builder/ designer to easily adopt energy efficiency measures into the construction with immediate impact.
- The Catalogue will consist of about 7000-10000 Design Typology, considering each climate zone.



Energy Efficient Building Materials Directory for India

Objective of this project:

- To create a national directory of energy efficient building materials.
- To augment the use of energy efficient building materials
- To encourage manufacturers to register their products in the directory
- To enhance energy efficiency and create awareness
- To make effective policies and regulations

Energy Efficient Building Materials Directory for India

What will this Accomplish?

Benefits for Manufacturers

Enhance
Visibility of Manufacturers
in the market

Network Integration of Industries

Materials can be registered at free of cost

Benefits for Developers

Informed Choices of Materials while building EE Homes

Cost information and comparison

Climate Specific **Decision Support** for Informed Choices

Benefits for Government/Policy Makers

Awareness

Making Effective Policies

Availability of credible data in the public domain

Benefits for the End consumer

Access to Manufacturer's contact details

Access to curated list of locally available products

Facilitate **quick comparison**between different Building Materials/
products based on relevant
properties

Facilitate green procurement

Availability of credible data in the public domain

Climate Specific **Decision Support** for Informed Choices in Building Materials/ products

Identify **Economically Viable** options as per user requirement.

Ultimately lead to Energy Efficient and Thermally Comfortable Buildings for India

ECONIWAS Web-Portal

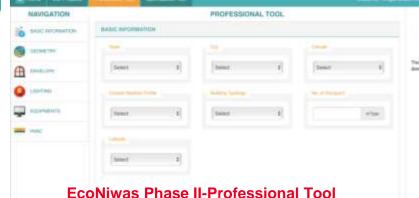
ECO-NIWAS

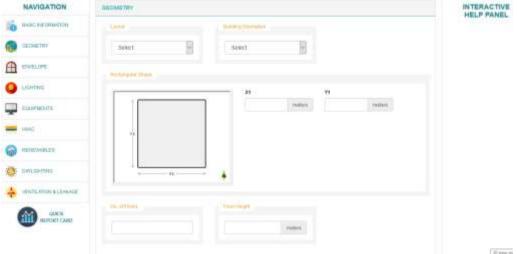
Energy Conservation - New Indian Way for Affordable & Sustainable homes

🤦 🔊 Login 🕼 Signup 💆 info@econiwas.com

- Digitalization can support in converting construction boom into an energy savings boom
- One stop solution, Awareness raising and empowering website www.econiwas.com
- Basic Tool, Professional tool, Compliance tool, Plugins, Prototypes and many more

One stop solution for energy efficient homes


ECONIWAS Web-Portal


INTERACTIVE

RESULTS

NAVIGATION

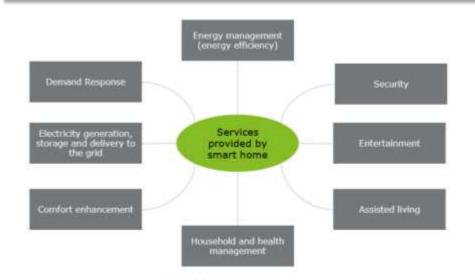
Professional Tool

Professionals, Engineers & Developers.

An advanced version to EcoNiwas Phase I for Architects, Building

Online simple to use tool for simulation and analysis

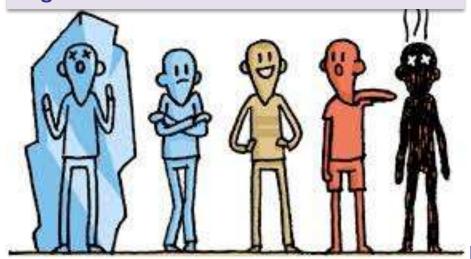
Optimization Tool


Smart Home Program - Technology Assessment Study and Pilot Design

Smart Home Program Technology Assessment Study and Pilot Design

Objective:

- Home automation Technologies
- Application potential in India,
- Optimal approach for informing demand response.
- Home automation centric energy efficiency policies in future.



 Preparation of Database and Adaptive Model for Thermal Comfort of occupancy in residential building

Objective:

To develop a single nation-wide adaptive thermal comfort model.

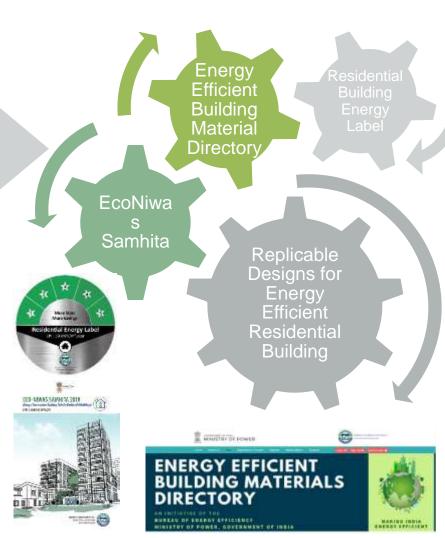
Residences of various types located in different climatic zones of the country, spread over major economic and social categories covering major typologies are targeted.

Source: ://www.phsc.co.uk/thermal-comfort-in-your-workplace/

User Benefits of New Govt. Initiatives

Policies & Regulations-Residential

- Eco-Niwas Samhita (ECBC-R)
- Star Rating for Buildings (Building Label)


Supporting Initiatives

- ECONIWAS Web-Portal
- Energy Efficient Building Materials
 Directory
- Replicable Design Catalogue of EE Homes

Building Material Directory -5000+ Materials Replicable Building Model -7000+ Models

User Benefits

- Major energy and cost savings for climate responsive design and effective use with the help of Energy Efficient Building Materials
- Evaluation, endorsing building design drawings for EcoNiwas Samhita compliance, Residential Building Energy Label and assessment of EPI based on building simulation.
- to enable the user/ builder/ designer to easily adopt energy efficiency measures into the construction with immediate impact.
- This will ensure that the relevant information on sustainable buildings is available in easy to use format and has a wide reach.
- To provide ready to use database for further making energy efficient policies

About Eco-Niwas Samhita

Our Program

- The project aims to support the 5 states of India (Delhi, Punjab, Uttar Pradesh, Karnataka, Maharashtra) to implement Eco Niwas Samhita (ENS) developed by the Bureau of Energy Efficiency (BEE), Ministry of Power.
- PwC will be supporting 3 states for establishing ENS cell in respective states.
- ➤ ENS Cell has been established by PwC, under PEDA to achieve the following objectives:

TASK I: Implement the strategy action decided by the ENS implementation forum in North Zone

TASK 2: Provide technical assistance for ENS implementation and enforcement

TASK 3: Conduct
Demonstration
Projects and provide
residential building
labels

TASK 4: Organize ENS awareness, training, and capacity building programmes

Understanding Eco-Niwas Samhita

Have you observed buildings in past & present...

Residential buildings in past

Design

- ☐ Less Glazed Area
- ☐ Proper shading
- Open space for natural ventilation
- Proper orientation
- Climate responsive design

Residential buildings in present

Design

- ☐ More Glazed Area
- ☐ No proper shading
- Natural ventilation is not taken care
- No consideration for building orientation
- Non climate responsive design

Have you observed buildings in past & present...

Residential buildings in past Materials	Residential buildings in present Materials
Locally available materials were used in buildings	☐ Use of imported materials for aesthetic purpose
Operation	Operation
Rely on Natural ventilation for achieving thermal comfort	☐ Minimal Natural Ventilation
☐ No air conditioning system was used.	Depends on air conditioning system for thermal comfort

Reason behind the shift in design...

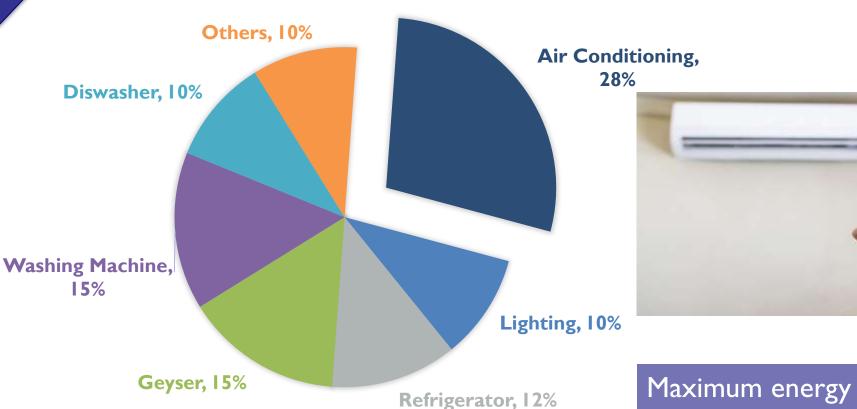
Effect of the transition in design

This has led to a drastic **increase** in electricity consumption of the building.

To provide comfort, we started relying on mechanical systems which consume a lot of energy. This has created an abnormal increase in the **energy demand**.

Now it is time to CHANGE, ENERGY EFFICIENT BUILDINGS

are the need of the hour



Energy distribution pattern in typical home

ENERGY DISTRIBUTION IN A TYPICAL HOME

Maximum energy consumption in a typical home is from Air conditioning

Source: IGBC Green Homes

Ways to reduce the energy demand of a building

High amount of electricity is required to remove the heat gain in a building and to maintain indoor thermal comfort level in the building.

Ways to reduce energy demand of a building

- Climate Responsive Building Design
- Efficient Building Envelope Design
- Use of efficient appliances like air conditioning system, lighting etc
- Proper maintenance of the electrical appliances

To address the above factors, Eco Niwas Samhita was created

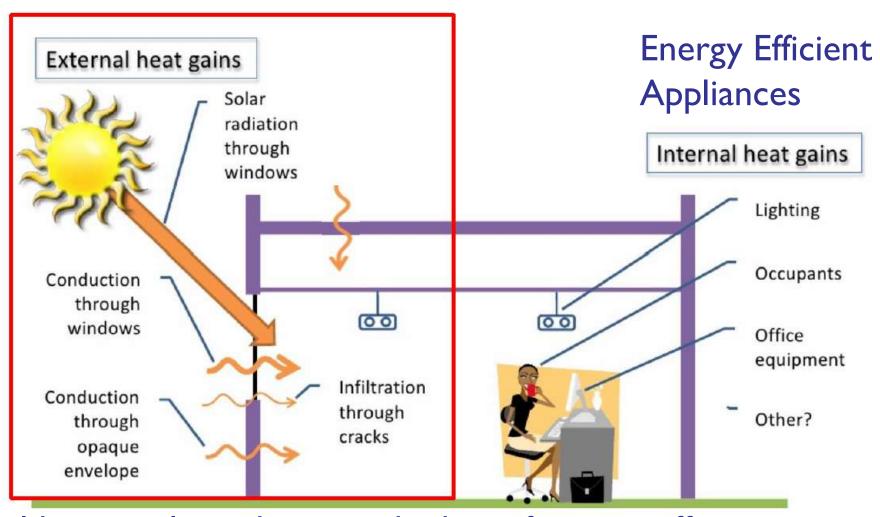
Launch of Eco-Niwas Samhita 2018

Eco-Niwas Samhita 2018 (Part I: Building Envelope) is the new Energy Conservation Building Code for Residential Buildings, launched by Ministry of Power (MoP) on 14 December 2018.

Impact Assessment of Part I

Estimated impact of ECBC-Residential Code from Year 2018 – 2030.

- Minimum 20% energy saving (in cooling) as compared to a typical building.
- ➤ Electricity saving of 25 billion kWh.
- ➤ 100 million tonnes of CO2 equivalent reduction.

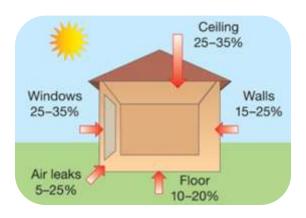

ENS Part I- Building Envelope and It's components

Sources for heat gain in a building

Design and Material Selection

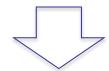
Building envelope design is the key of energy efficient residential buildings

Understand the heat gain through envelope in the building


ENS Part I- Building Envelope & its components

Sets limits for glazing to ensure adequate daylight

(Window to Wall Ratio WWR, VLT)


Sets limits for envelope heat gain of the building

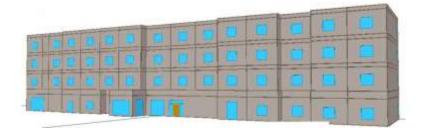
(U value of walls, Solar Heat Gain Coefficient SHGC, U value of roofs)

Sets limits for window openings for adequate natural ventilation

(Window to Floor Area Ratio WFR)

Residential Envelope Transmittance Value (RETV)

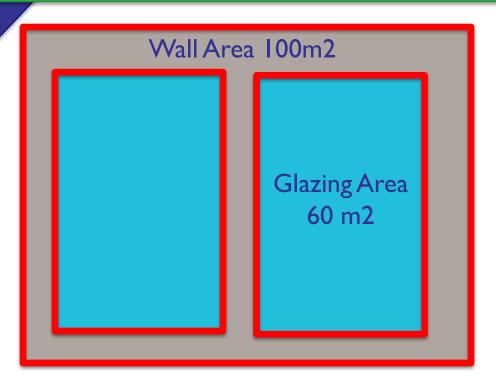
What is WWR?



WWR is Window-to-Wall Ratio

Definition:

WWR is the ratio of non-opaque building envelope components area to the envelope area (excluding roof) of dwelling units


$$WWR = \frac{Area\ of\ Non-opaque}{Area\ of\ Envelope}$$

WWR Sample calculation

Calculation:

$$WWR = \frac{60}{100}$$

$$WWR = 0.6$$
$$= 60\%$$

$$WWR = \frac{Area\ of\ Glazing}{Area\ of\ Wall}$$

What is VLT

VLT is Visual Light Transmittance

Definition:

Visible light transmittance is the amount of light in the visible portion of the spectrum that passes through a glazing material.

5% 15% 20% 30% 35% 50% 75%

Higher the VLT, more is the daylight received inside the building

Sample glass cutsheet

From where can we obtain the VLT of the Glass?

Colour / Performance	Thickness (mm)	Light Transmittance LT	Light Reflectance LR	Total Solar Radiant Heat Transmittance	Total Shading Coefficient	U Value (W/m²K)	R _w Value (dB)
Clear	10	0.77	0.14	0.67	0.77	2.7	38
Clear	12	0.76	0.14	0.64	0.74	2.7	38
Clear	15	0.74	0.13	0.60	0.69	2.6	40
73/42	10	0.69	0.10	0.40	0.46	1.4	38
70/39	10	0.67	0.12	0.37	0.43	1.3	38
69/37	10	0.66	0.11	0.35	0.40	1.3	38
62/29	10	0.58	0.09	0.29	0.33	1.3	38
50/27	10	0.48	0.10	0.26	0.30	1.3	38
30/17	10	0.29	0.24	0.19	0.22	1.3	38

VLT of a Glass can be obtained from the Glass cut sheet available with any Glass manufacturer

Visible Light Transmittance (VLT) & Window to Wall Ratio (WWR)

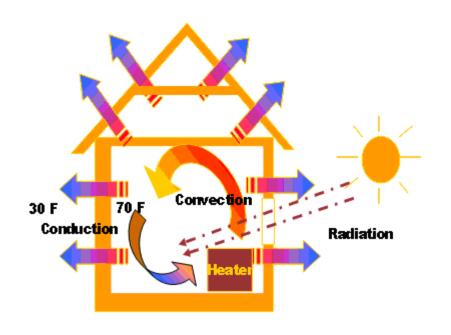
For ENS Compliance, Minimum Visible Transmittance (VLT) shall not be less than the values given in Table below:-

Window-to-wall ratio (WWR)	Minimum VLT
0-0.30	0.27
0.31-0.40	0.20
0.41-0.50	0.16
0.51-0.60	0.13
0.61-0.70	0.11

What is U-Value?

U value means Thermal transmittance of a material

Definition:

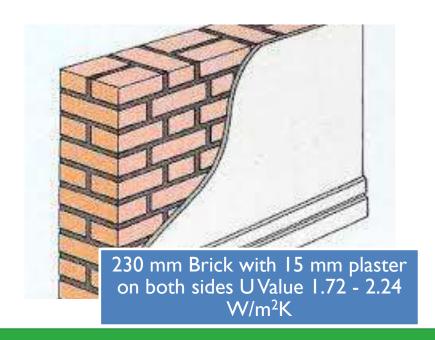

Thermal transmittance is the rate of heat transfer through materials

Unit of U value is W/(m²K)

$$U = \frac{1}{Thermal\ Resistance\ of\ a\ material\ (R)}$$

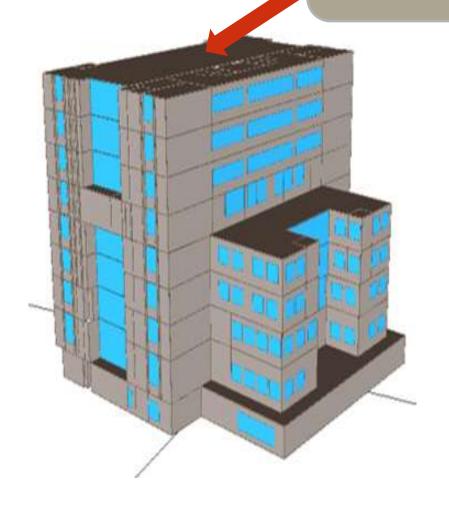
Where
$$R = \frac{Thickness\ of\ material\ (t)}{Conductivity\ (k)}$$

Conductivity (k) is the rate at which heat is


The lower the U-value, the lower is the heat gain/loss in the building.

Types of wall & their U Value

Types of wall & their U Value



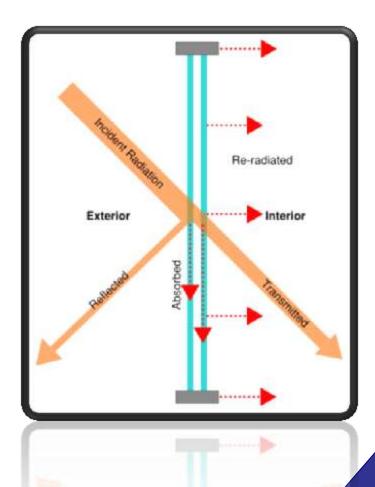
Thermal Transmittance of Roof (Unout)

Thermal Transmittance of Roof (U_{roof})

Thermal transmittance (U_{roof}) characterizes the thermal performance of the roof of a building.

Thermal transmittance of roof shall comply with the maximum U_{roof} value of 1.2 W/m²K.

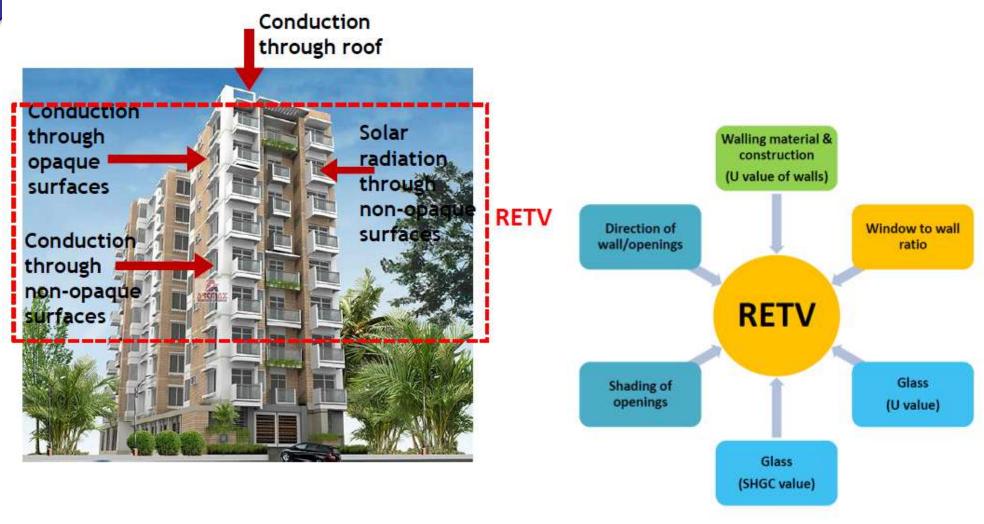
What is SHGC



SHGC is Solar Heat Gain Coefficient

Definition:

The SHGC is the fraction of incident solar radiation admitted through a window, both directly transmitted and absorbed and subsequently released inward.

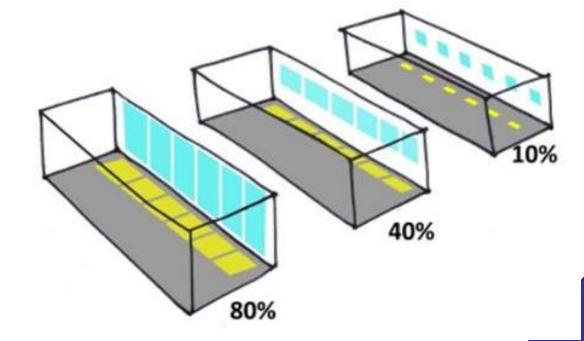

The value of SHGC varies from 0 - I

Residential Envelope Transmittance Value (RETV) for building envelope (except roof)

Residential Envelope Transmittance Value (RETV) for building envelope (except roof)

The RETV of the building envelope (except roof) for four climate zones, namely, Composite Climate, Hot-Dry Climate, Warm-Humid Climate, and Temperate Climate, shall comply with the maximum **RETV of 15 W/m**²

What is WFR?

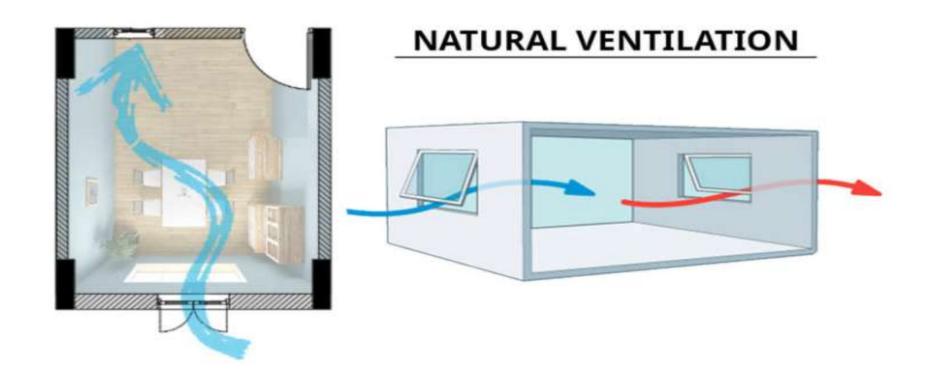


WFR is Openable Window to Floor Area Ratio

Definition:

The openable window-to-floor area ratio (WFR $_{op}$) is the ratio of openable area to the carpet area of dwelling units.

$$WFR_{op} = \frac{A_{openable}}{A_{Carpet}}$$



Openable Window-to-Floor Area Ratio (WFR_{op})

 WFR_{op} helps in natural ventilation, improvement in thermal comfort, and reduction in cooling energy.

WFR Sample Calculation

Calculation:

$$WFR = 0.54$$

Floor Area 100m2

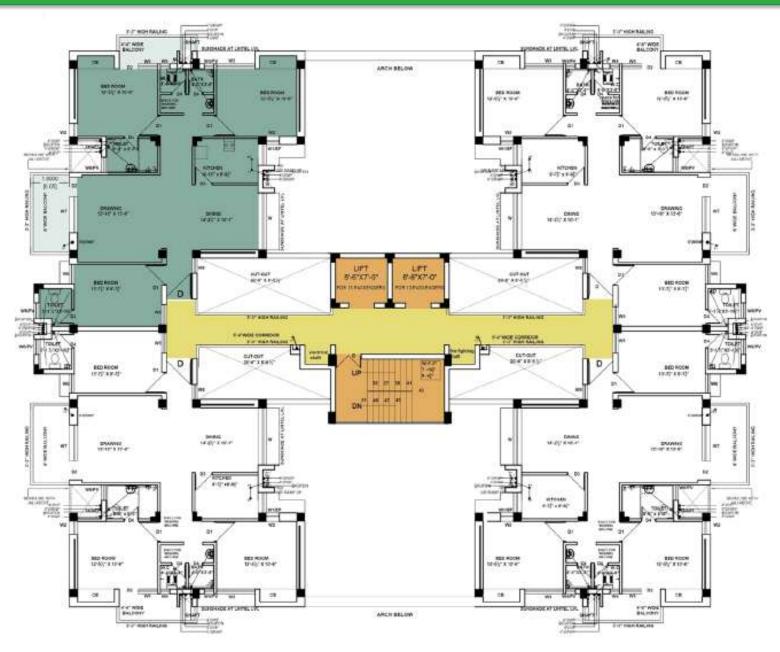
Openable Window-to-Floor Area Ratio (WFR_{op})

The openable window-to-floor area ratio (WFR_{op}) shall not be less than the values given in table below:-

Climatic Zone	Minimum percentage (%) of WFR _{op}
Composite	12.50
Hot-Dry	10.00
Warm - Humid	16.66
Temperate	12.50
Cold	8.33

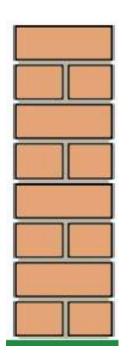
Eco-Niwas Samhita - Case Study

Case study project details



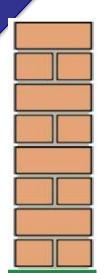
- Case study project is a residential quarters built for the NABARD (National Bank For Agriculture & Rural Development) staff at Mohali.
- The climate type is composite and is similar to that of Chandigarh.
- No. of dwelling units in Block II (DU): 20 (all 2 BHK) Stilt + 5 storeys

Floor Plan layout of the NABARD project



Case I: 230 mm brick wall + Normal WWR + Single Clear Glazing + No Shading of Windows

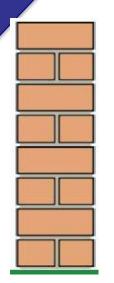
	RETV (I Term) Wall conduction	RETV (II Term) Window conduction	RETV (III Term) Window transmittance	RETV (TOTAL)
Case. I Brick Wall No Shading Single clear glazing WWR: ~14%	10.1	1.8	9.6	21.5


230mm Normal Brick wall with U value – 2 w/m²k

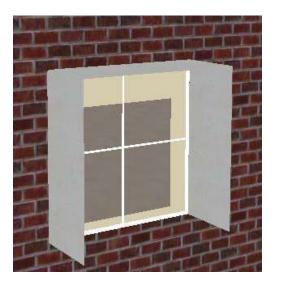
- RETV = 21.5, (high compared to cut-off of 15 W/m² as per ECBC-R)
- Heat conduction through wall is high and high heat gain through windows with no shading

Case II: Case I + Proper Shading of Windows

230mm Normal Brick wall with U value – 2 w/m²k

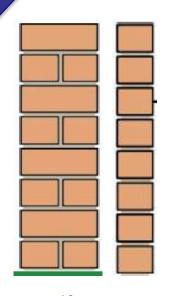

	RETV (I Term) Wall conduction	RETV (II Term) Window conduction	RETV (III Term) Window transmittance	RETV (TOTAL)
Case.2 Brick Wall Shading with overhang & Fins Single clear glazing WWR:~14%	10.1	1.8	6.7	18.6

- RETV = 18.6 W/m²
- Shading helps in reducing heat gain through windows

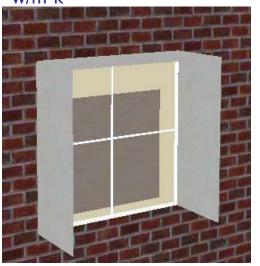

Case III: Case II+ Single reflective glass

230mm Normal Brick wall with U value – 2 w/m²k

	RETV (I Term) Wall conduction	RETV (II Term) Window conduction	RETV (III Term) Window transmittance	RETV (TOTAL)
Case.3 Brick Wall Shading with overhang & Fins Single reflective glazing WWR:~14%	10.1	1.8	4.5	16.3



- RETV = 16.3 W/m^2
- Using single reflective glass instead of single clear glass reduces heat gain due to window transmittance

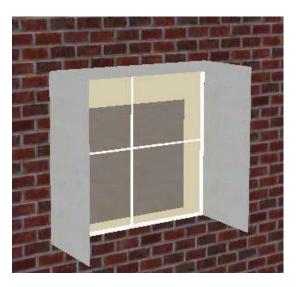


Case IV: (Final Design Constructed) Brick cavity wall+ Shading+ Single reflective glass

230 mm + 40 mm cavity +115 mm brick with U value - 1.1 w/m^2k

	RETV (I Term) Wall conduction	RETV (II Term) Window conduction	RETV (III Term) Window transmittance	RETV (TOTAL)
 Case.4 Brick Wall Shading with overhang & Fins Single reflective glazing WWR: ~14% 	6.6	1.8	4.5	12.8

- $RETV = 12.8 W/m^{2}$
- Using Brick cavity wall with 40mm air gap reduces the heat gain due to wall conduction



Case V: Extra measure: AAC block wall + Shading of Windows+ Single reflective glass)

200 mm AAC block with U value – 0.7 w/m²k

	RETV (I Term) Wall conduction	RETV (II Term) Window conduction	RETV (III Term) Window transmittance	RETV (TOTAL)
Case.5 AAC Block Shading with overhang & Fins Single reflective glazing WWWR:~14%	4.7	1.8	4.5	10.9

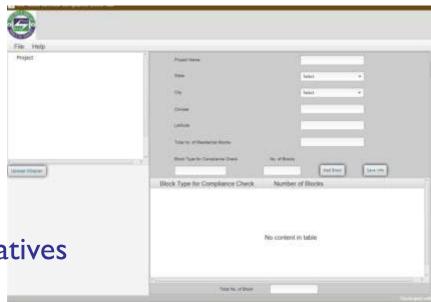
- RETV = 10.9 W/m^2
- Reduced thermal conduction from walls; use of single reflective glass and shading helps in reducing heat gain through windows

Key Envelope Parameters & it's impact on RETV

	RETV (I Term) Wall conduction	RETV (II Term) Window conduction	RETV (III Term) Window transmittance	RETV (TOTAL)
Case.I Brick Wall No Shading Single clear glazing WWR: ~14%	10.1	1.8	9.6	21.5
Case.2 Brick Wall Shading with overhang & Fins Single clear glazing WWR: ~14%	10.1	1.8	6.7	18.6
Case.3 Brick Wall Shading with overhang & Fins Single reflective glazing WWR: ~14%	10.1	1.8	4.5	16.3
Case.4 Brick Wall Shading with overhang & Fins Single reflective glazing WWR: ~14%	6.6	1.8	4.5	12.8
 Case.5 AAC Block Shading with overhang & Fins Single reflective glazing WWR: ~14% 	4.7	1.8	4.5	10.9

Eco-Niwas Samhita Compliance Approach

Eco-Niwas Samhita (ENS) Compliance Tool


 Offline application tool along with it's user manual and tool demonstration video can be downloaded from BEE website

Inputs to software

- Architectural drawings (plans, sections and elevations)
- Construction material details

Results

- Code Compliance check
- RETV
- Comparison of different design alternatives

Eco-Niwas Samhita (ENS) Compliance Tool

Eco-Niwas Samhita: Compliance Check Report

1. ECBC-R Compliance Results

S/No.	REQUIREMENT	CALCULATED	CRITERIA	STATUS
Block-1				
1	WFRop	28.83	12.5	Compliant
2	VLT %	85.0	27.0	Compliant
3	Uroof	0.49	1.2	Compliant
4	RETV	4.54	15	Compliant

Eco-Niwas Samhita (ENS) Compliance Tool

Online application tool along with it's user manual and tool demonstration video is available on **ECONIWAS.COM** website

About Us +

Star Label +

ECO-NIWAS +

Information Center +

Publications

Connect +

🔼 🔊 Login 📝 Signup 💟 info@econiwas.com

THANK YOU

Supported by GIZ Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) Gmb
Implemented by PWC