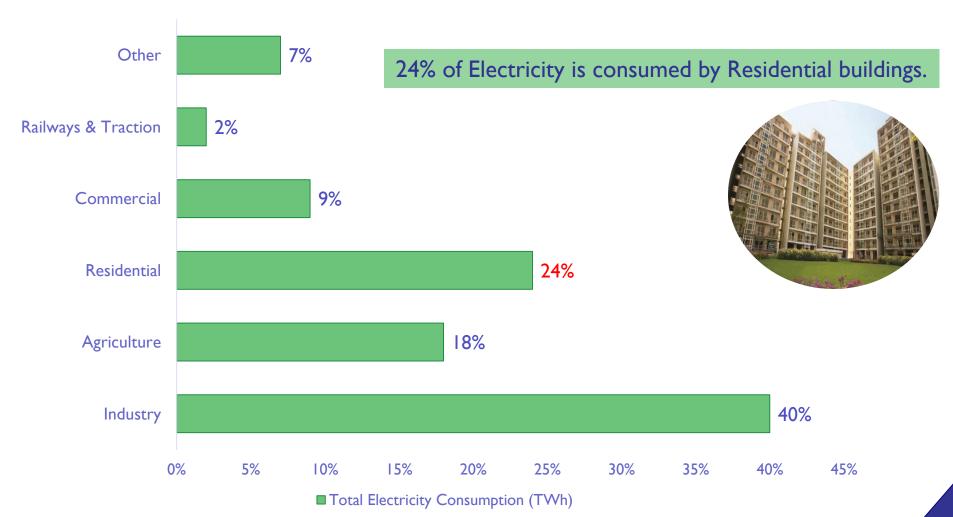
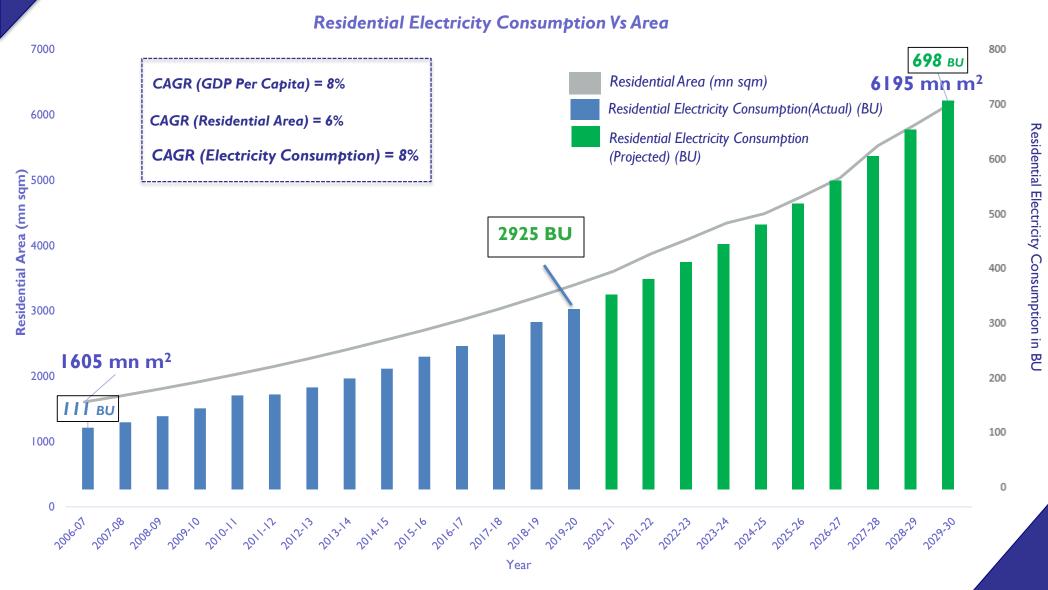


Energy Conservation Building Code for Residential Building Eco-Niwas Samhita 2018


Understanding of Eco-Niwas Samhita 2018

Electricity consumption pattern in India

TOTAL ELECTRICITY CONSUMPTION 1066 (BU) IN 2016-17

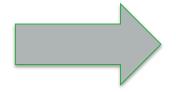


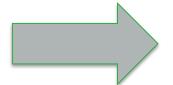
Source: Energy Statistics 2018

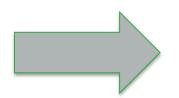
Building Sector - Built up area and electricity consumption projection

Introduction of Eco-Niwas Samhita 2018

Why Eco-Niwas Samhita has been created?


- Built Up Area India will add 3 Billion m² by 2030 of New residential building w.r.t Year 2018
- □ Energy Demand There is a 4 times increase in energy demand for residential units from 1996 2016
- ☐ Projections show energy demand will be approximately between 630 TWh and 940 TWh by 2032


Introduction of Eco-Niwas Samhita 2018


What is Eco-Niwas Samhita 2018?

ECO-Niwas Samhita 2018 - an Energy Conservation Building Code for Residential Buildings.

Launched on National Energy Conservation Day in 2018.

Applicable to all residential units with plot area ≥500m² (However, states and municipal bodies may reduce the plot area so that maximum residential buildings fall in the category of ENS compliance)

Other Existing Government initiatives

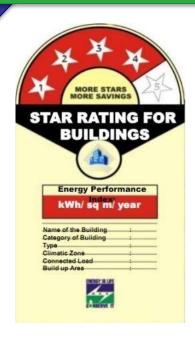
all of of the state of the stat

Energy Conservation Building Code (ECBC)

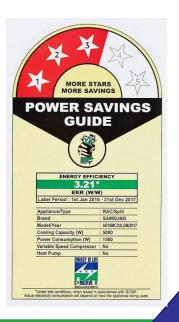
- The ECBC sets minimum energy performance standards for commercial buildings.
- ECBC defines norms of Energy performance for various building components and takes into consideration the climatic region.

Eco-Niwas Samhita 2018

Energy Conservation Building Code for Residential Buildings



Other Existing Government initiatives



BEE star rating programme for Office buildings.

BEE has developed a star rating programme for buildings which is based on the actual performance of a building in terms of its specific energy usage in kwh / m² / year. This programme rates commercial office buildings on the scale of I - 5 star, with
 5 Star labelled buildings being the most efficient.

BEE star rating programme for electrical appliance.

The star rating is a measure of energy efficiency of an appliance, it is
a five points scale where higher the rating, lower is the energy
consumed by appliance.

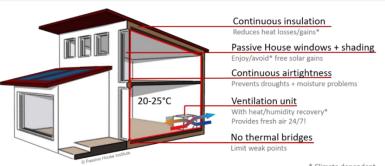
New Government initiatives

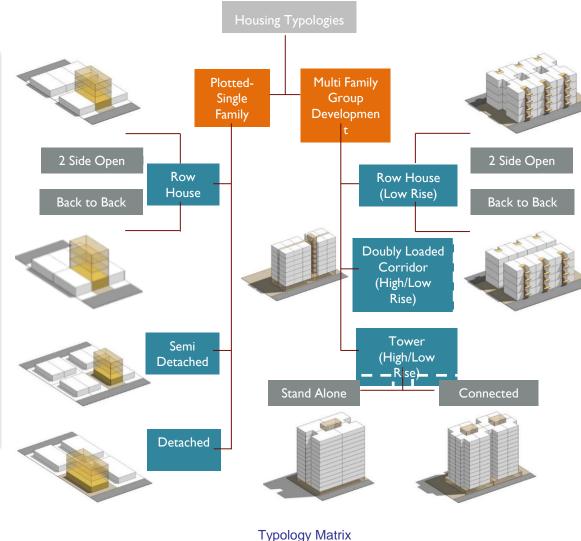
Policies & Regulations-Residential

- Eco-Niwas Samhita (ECBC-R) Part -I
- Star Rating for Buildings (Building Label)

Supporting Government Initiatives

- Replicable Design Catalogue of EE Homes
- Energy Efficient Building Materials Directory
- ECONIWAS Web-Portal
- Smart Home Program
- Eco-Niwas Samhita (ECBC-R) Part -II

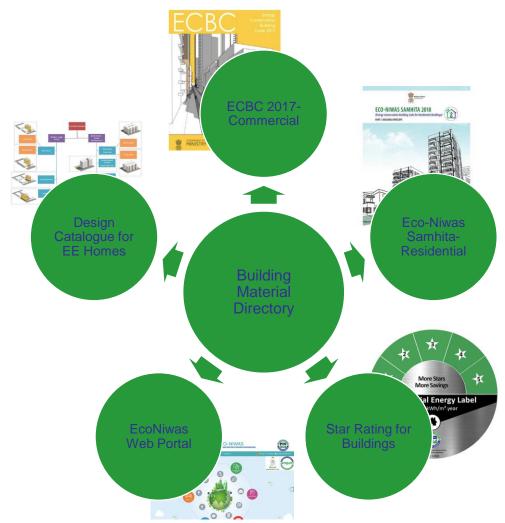




Replicable Designs for Energy Efficient Residential **Buildings**

- The project aims to develop a **Design Template** for building energy efficient homes, catering to:
 - Various residential types
 - Across different house sizes
 - In different climatic zones across India
- The focus of the project is to enable the user/ builder/ designer to easily adopt **energy efficiency** measures into construction with immediate impact.
- The Catalogue will consist of about 7000-10000 Design Typology, considering each climate zone.

* Climate dependent



Energy Efficient Building Materials Directory for India

Objective of this project:

- To create a national directory of energy efficient building materials.
- To augment the use of energy efficient building materials
- To encourage manufacturers to register their products in the directory
- To enhance energy efficiency and create awareness
- To make effective policies and regulations

Energy Efficient Building Materials Directory for India

What will this Accomplish?

Benefits for Manufacturers

Enhance Visibility of Manufacturers in the market

Network Integration of Industries

Materials can be registered at free of cost

Benefits for Developers

Informed Choices of Materials while building EE Homes

Cost information and comparison

Climate Specific **Decision Support** for Informed Choices

Benefits for Government/Policy Makers

Awareness

Making Effective Policies

Availability of credible data in the public domain

Benefits for the End consumer

Access to Manufacturer's contact details

Access to curated list of locally available products

Facilitate **quick comparison**between different Building Materials/
products based on relevant
properties

Facilitate green procurement

Availability of credible data in the public domain

Climate Specific **Decision Support** for Informed Choices in Building Materials/ products

Identify **Economically Viable** options as per user requirement.

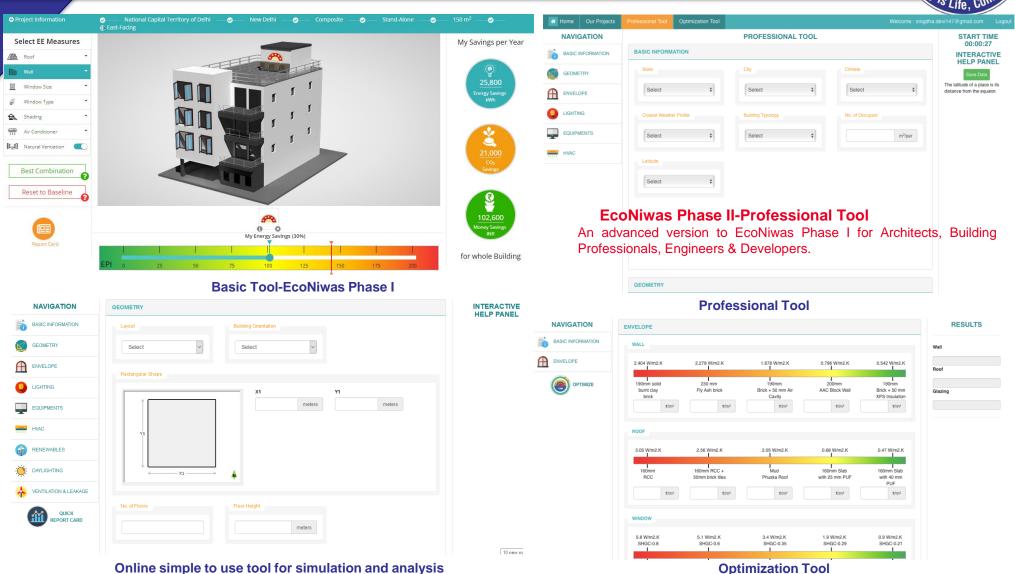
Ultimately lead to Energy Efficient and Thermally Comfortable Buildings for India

ECONIWAS Web-Portal


ECO-NIWAS

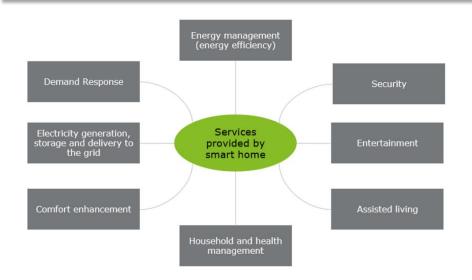
Energy Conservation - New Indian Way for Affordable & Sustainable homes

- Digitalization can support in converting construction boom into an energy savings boom
- One stop solution, Awareness raising and empowering website www.econiwas.com
- Basic Tool, Professional tool, Compliance tool, Plugins, Prototypes and many more



ECONIWAS Web-Portal

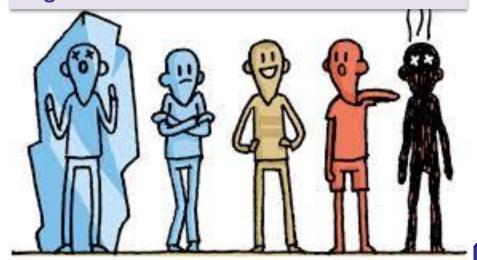
13


Smart Home Program - Technology Assessment Study and Pilot Design

Smart Home Program Technology Assessment Study and Pilot Design

Objective:

- Home automation Technologies
- Application potential in India,
- Optimal approach for informing demand response.
- Home automation centric energy efficiency policies in future.



• Preparation of Database and Adaptive Model for Thermal Comfort of occupancy in residential building

Objective:

To develop a single nation-wide adaptive thermal comfort model.

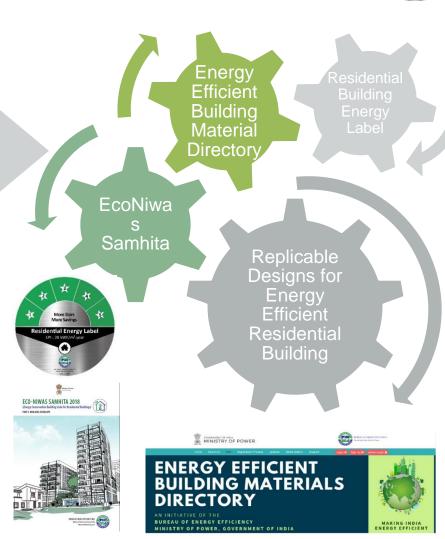
Residences of various types located in different climatic zones of the country, spread over major economic and social categories covering major typologies are targeted.

Source: ://www.phsc.co.uk/thermal-comfort-in-your-workplace/

User Benefits of New Govt. Initiatives

Policies & Regulations-Residential

- Eco-Niwas Samhita (ECBC-R)
- Star Rating for Buildings (Building Label)


Supporting Initiatives

- ECONIWAS Web-Portal
- Energy Efficient Building Materials
 Directory
- Replicable Design Catalogue of EE Homes

Building Material Directory -5000+ Materials Replicable Building Model -7000+ Models

User Benefits

- Major energy and cost savings for climate responsive design and effective use with the help of Energy Efficient Building Materials
- Evaluation, endorsing building design drawings for EcoNiwas Samhita compliance, Residential Building Energy Label and assessment of EPI based on building simulation.
- to enable the user/ builder/ designer to easily adopt energy efficiency measures into the construction with immediate impact.
- This will ensure that the relevant information on sustainable buildings is available in easy to use format and has a wide reach.
- To provide ready to use database for further making energy efficient policies

About Eco-Niwas Samhita

Our Program

- The project aims to support the 5 states of India (Delhi, Punjab, Uttar Pradesh, Karnataka, Maharashtra) to implement Eco Niwas Samhita (ENS) developed by the Bureau of Energy Efficiency (BEE), Ministry of Power.
- PwC will be supporting 3 states for establishing ENS cell in respective states.
- ➤ ENS Cell has been established by PwC, under PEDA to achieve the following objectives:

TASK 1: Implement the strategy action decided by the ENS implementation forum in North Zone

TASK 2: Provide technical assistance for ENS implementation and enforcement

TASK 3: Conduct
Demonstration
Projects and provide
residential building
labels

TASK 4: Organize ENS awareness, training, and capacity building programmes

Have you observed buildings in past & present...

Residential In Past	Residential In Present			
□ Low Rise	☐ Mid & High Rise			
☐ Adequate Shading	☐ Shading Limited By Bye-laws			
☐ Central Courtyard	Clustering Around Central Greens			
☐ Emphasis On Natural Cross-Ventilation	☐ Limited Natural Ventilation — Single Sided			
☐ Proper Orientation	☐ Low Or No Emphasis On Orientation			
☐ Local Construction Materials	☐ Global Construction Materials			
Priority On Thermal Comfort	☐ Priority On Speedy Construction			
☐ Climate Responsive Design	☐ Poor Climate Responsive Design			

Reason behind the shift in design...

•Rapid Urbanization

Need for Mass Affordable Housing

Higher Real-Estate Value

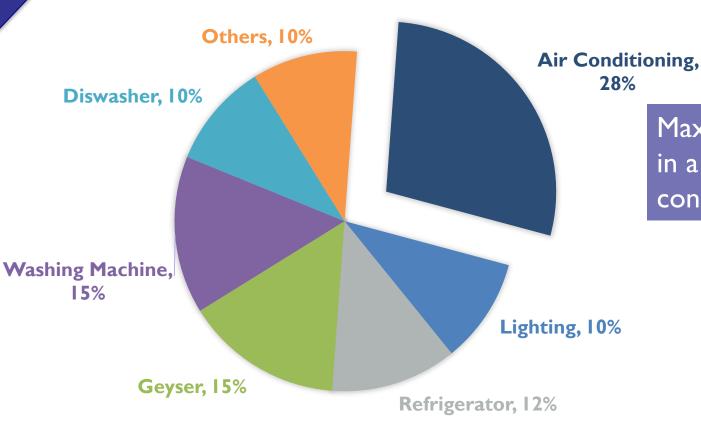
Availability & Abuse of Technologies

Acceptance to Global Design Philosophy

Effect of the transition in design

Increased electricity consumption

Dependency on Mechanical systems



Energy distribution pattern in typical home

Maximum energy consumption in a typical home is from Air conditioning

Source: IGBC Green Homes

Now it is time to CHANGE, ENERGY EFFICIENT BUILDINGS

are the need of the hour

Ways to reduce the energy demand of a building

- Climate Responsive Building Design
- Efficient Building Envelope Design
- Energy Efficient Appliances (5 Star A/C, Fridge, LED Lights Etc)
- Proper Maintenance of Electrical Appliances

To Address The Above Factors

Eco Niwas Samhita Was Created

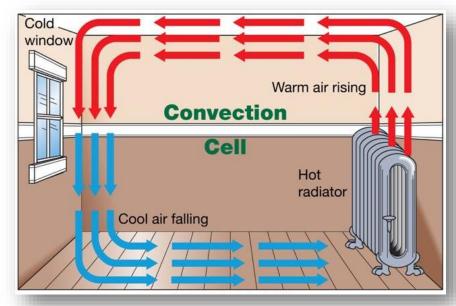
Launch of Eco-Niwas Samhita 2018

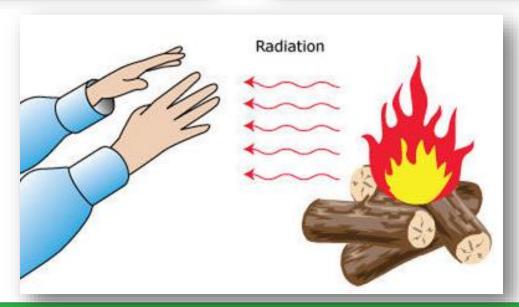
Eco-Niwas Samhita 2018 (Part I: Building Envelope) is the New ECBC for Residential Buildings, launched by Ministry of Power (MoP) on 14 December 2018.

Impact Assessment of Part I

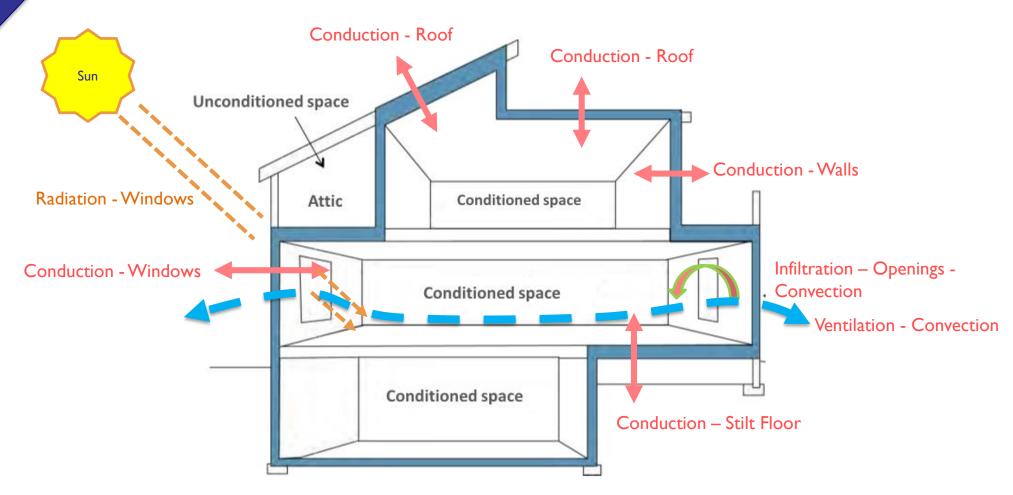
Estimated Savings 2018 – 2030

- ➤ 20% Cooling Energy
- ▶ 25 billion kWh Electricity
- ➤ 100 million Tons of CO2 Equivalent


Building Envelope Building Physics & Concepts



How Heat Travels...



Sources for heat gain in a building

Building Envelope Design Is The Key Of Energy Efficient Residential Buildings

What is U-Value?

Definition:

Thermal transmittance is the rate of heat transfer through materials

Unit of U-Value : $W/(m^2K)$

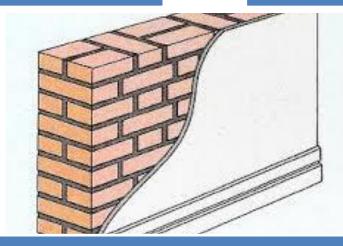
U-Value =
$$\frac{1}{Thermal \ Resistance \ of a \ material \ (R)}$$

Where R =
$$\frac{Thickness\ of\ material\ (t)}{Conductivity\ (k)}$$

Conductivity (k) is the rate at which heat travels through I meter thick material. It is a property of a material

The lower the U-value, the lower is the heat gain/loss in the building.

Types of wall & their U Value



150 mm RCC (No plaster) UValue 3.77 W/m²K

200 mm Solid Concrete Block with 15 mm plaster on both sides – UValue 2.8 W/m²K

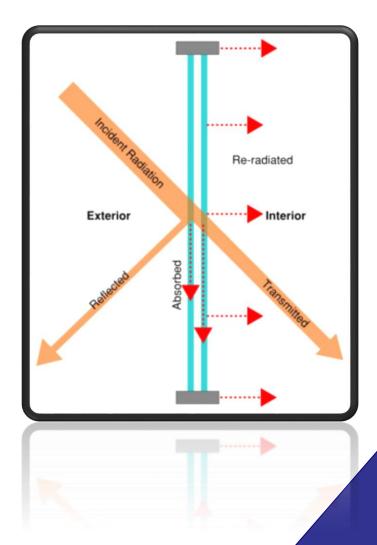
230 mm Brick with 15 mm plaster on both sides UValue 1.72 - 2.24 W/m²K

Types of wall & their U Value

200 mm Autoclaved Aerated Concrete (AAC) with 15 mm plaster on both side UValue 0.77 W/m²K

300 mm Autoclaved Aerated Concrete (AAC) with 15 mm plaster on both sides UValue 0.54 W/m²K

What is SHGC

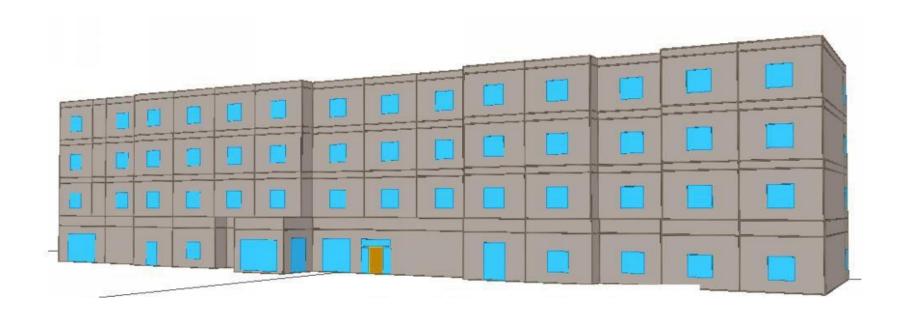


Solar Heat Gain Coefficient

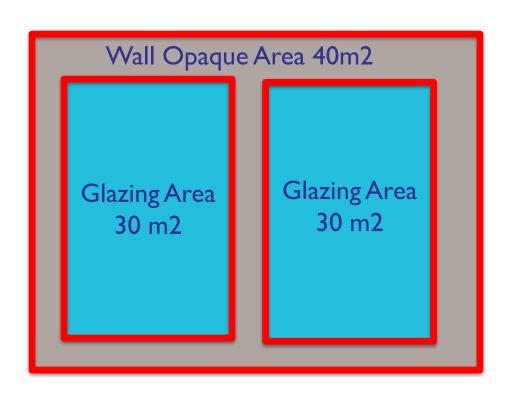
Definition:

SHGC is the fraction of incident solar radiation admitted through a window, both directly transmitted and absorbed and subsequently released inward.

The value of SHGC varies from 0 - I



What is Window to Wall Ratio (WWR)


$$WWR = \frac{Area\ of\ Non - Opaque\ Windows\ \&\ Openings}{Total\ Area\ of\ Exterior\ Walls\ Including\ Windows\ \&\ Openings}$$

WWR Sample calculation

$$WWR = \frac{30 + 30}{40 + 30 + 30}$$

$$WWR = \frac{60}{100}$$

$$WWR = 0.6$$

What is VLT

VLT is Visual Light Transmittance

Definition:

The amount of light in the visible portion of the spectrum that passes through a glazed material.

5% I 5% 20% 30% 35% 50% 75%

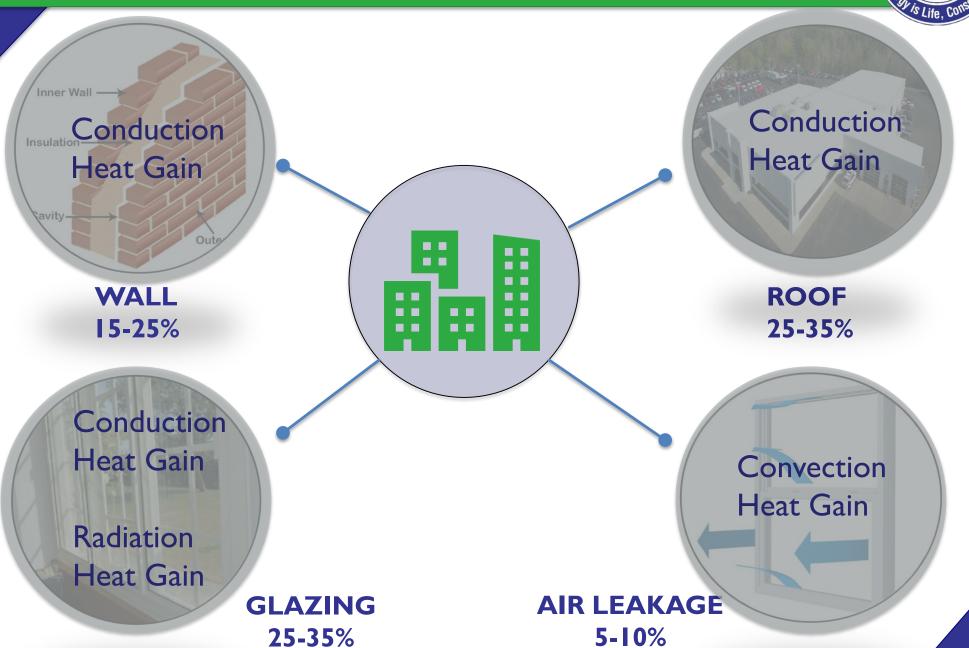
Higher the VLT, more is the daylight received inside the building through glass.

Sample glass cutsheet

From where can we obtain the VLT, SHGC & U-Value of the Glass?

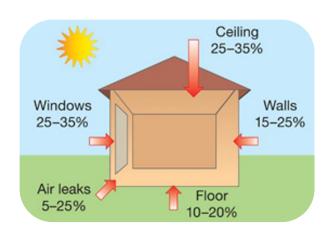
Colour / Performance	Thickness (mm)	Light Transmittance LT	Light Reflectance LR	Total Solar Radiant Heat Transmittance	Total Shading Coefficient	U Value (W/m²K)	R _w Value (dB)
Clear	10	0.77	0.14	0.67	0.77	2.7	38
Clear	12	0.76	0.14	0.64	0.74	2.7	38
Clear	15	0.74	0.13	0.60	0.69	2.6	40
73/42	10	0.69	0.10	0.40	0.46	1.4	38
70/39	10	0.67	0.12	0.37	0.43	1.3	38
69/37	10	0.66	0.11	0.35	0.40	1.3	38
62/29	10	0.58	0.09	0.29	0.33	1.3	38
50/27	10	0.48	0.10	0.26	0.30	1.3	38
30/17	10	0.29	0.24	0.19	0.22	1.3	38

VLT of a Glass can be obtained from the Glass cut sheet available with all Glass manufacturers



ENS Part I- Building Envelope and It's components

Typical Heat Gain From Building Envelope



Code Compliance Requirements - Envelope

Transparency

Heat Transmission

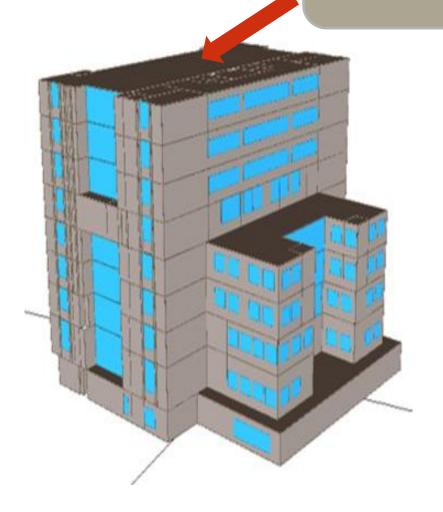
Ventilation

- I. Window to Wall Ratio
- 2. Visual Light Transmittance
- 3. U-Value of Walls
- 4. Solar Heat Gain Coefficient
- 5. U-Value of Roofs

6. Window to Floor Area Ratio

Code Compliance : VLT & WWR

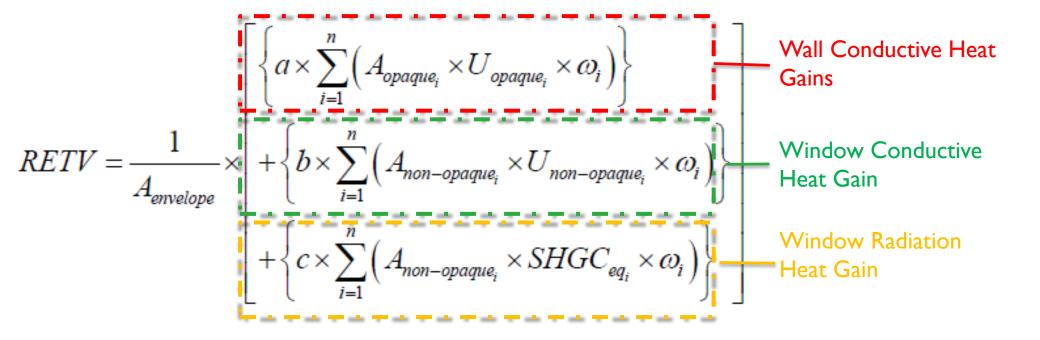
Minimum VLT shall not be less than the values given in Table below:-


Window-to-wall ratio (WWR)	Minimum VLT
0-0.30	0.27
0.31-0.40	0.20
0.41-0.50	0.16
0.51-0.60	0.13
0.61-0.70	0.11

Thermal Transmittance of Roof (U....)

Thermal Transmittance of Roof (U_{roof})

Thermal transmittance (U_{roof}) characterizes the thermal performance of the roof of a building.


Maximum U_{roof} : I.2 W/m²K.

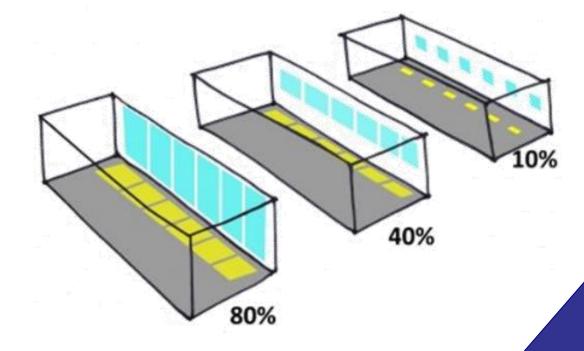
Residential Envelope Transmittance Value (RETV)

RETV can be calculated by using the following formula:-

Residential Envelope Transmittance Value (RETV)

The RETV of the building envelope (except roof) for four climate zones, namely, Composite Climate, Hot-Dry Climate, Warm-Humid Climate, and Temperate Climate, shall comply with the maximum RETV of 15 W/m²

Window to Floor Area Ratio

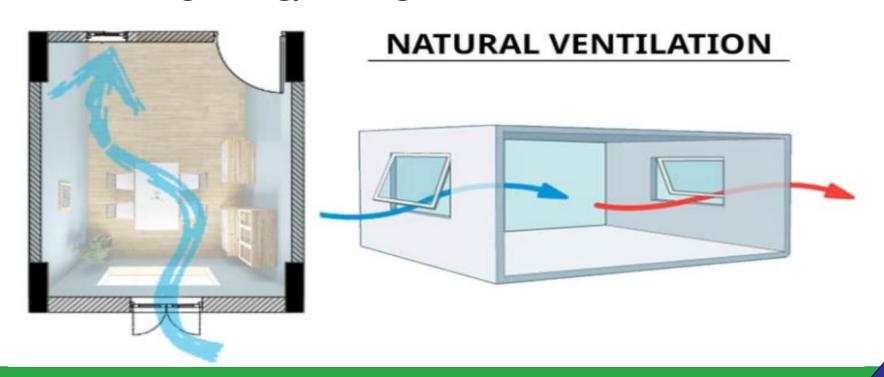


WFR_{OP} is Openable Window to Floor Area Ratio

Definition:

The openable window-to-floor area ratio (WFR $_{op}$) is the ratio of openable area to the carpet area of dwelling units.

$$WFR_{op} = \frac{A_{openable}}{A_{Carpet}}$$



Openable Window-to-Floor Area Ratio (WFR_{op})

Higher WFR_{op} helps in enhancement in

- Natural Ventilation
- Thermal comfort
- Cooling Energy Savings

WFR Sample Calculation

Calculation:

$$WFR = 0.54$$

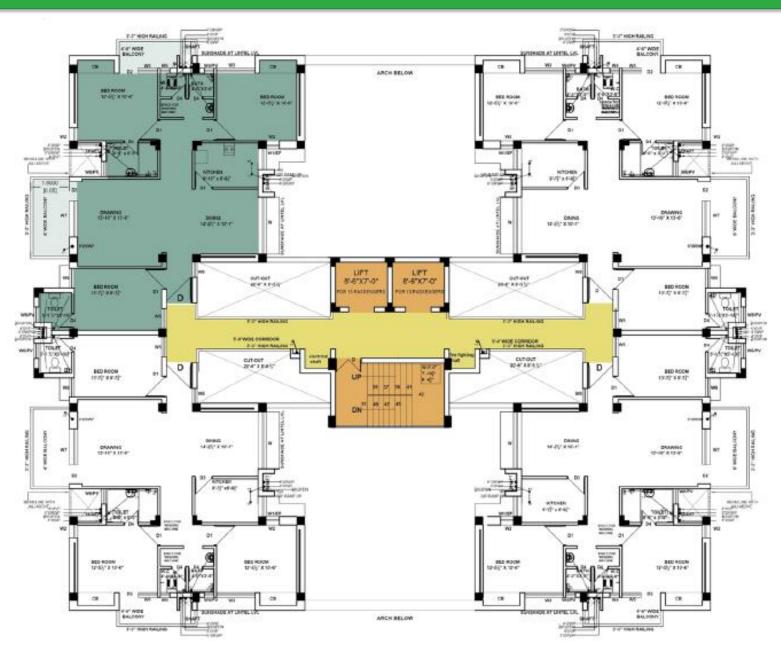
Floor Area 100m2

Openable Window-to-Floor Area Ratio (WFR_{op})

Climatic Zone	Minimum percentage (%) of WFR _{op}
Composite	12.50
Hot-Dry	10.00
Warm - Humid	16.66
Temperate	12.50
Cold	8.33

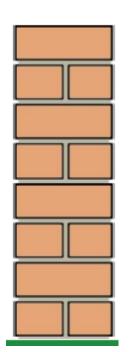
Eco-Niwas Samhita - Case Study

Case study project details



- Residential quarters built for the NABARD (National Bank For Agriculture & Rural Development) staff at Mohali.
- The climate type is composite and is similar to that of Chandigarh.
- No. of dwelling units in Block II (DU): 20 (all 2 BHK) Stilt + 5 storeys

Floor Plan layout of the NABARD project

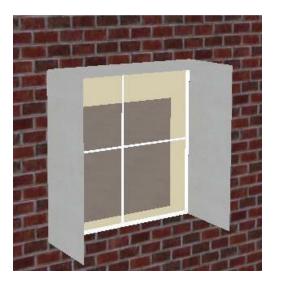


Case I: 230 mm brick wall + Normal WWR + Single Clear Glazing + No Shading of Windows

	RETV Wall conduction	RETV Window conduction	RETV Window Radiation	RETV (TOTAL)
Case. I Brick Wall No Shading Single clear glazing WWR: ~14%	10.1	1.8	9.6	21.5

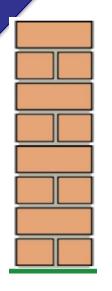

230mm Normal Brick wall with U value – 2 w/m²k

- RETV: 21.5 W/m² higher than 15 W/m² (Non compliant)
- Heat conduction through wall is high and high heat gain through windows with no shading


Case II: Case I + Proper Shading of Windows

230mm Normal Brick wall with U value – 2 w/m²k

	RETV Wall conduction	RETV Window conduction	RETV Window Radiation	RETV (TOTAL)
Case.2 Brick Wall Shading with overhang & Fins Single clear glazing WWR: ~14%	10.1	1.8	6.7	18.6

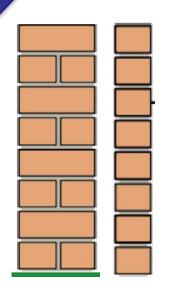


- RETV = 18.6 W/m²
- Shading helps in reducing heat gain through windows

Case III: Case II+ Single reflective glass

230mm Normal Brick wall with U value – 2 w/m²k

	RETV Wall conduction	RETV Window conduction	RETV Window Radiation	RETV (TOTAL)
 Case.3 Brick Wall Shading with overhang & Fins Single reflective glazing WWR: ~14% 	10.1	1.8	4.5	16.3



- $RETV = 16.3 W/m^{2}$
- High Reflective Glass also helps in reducing heat gain through windows

Case IV: (Final Design Constructed) Brick cavity wall+ Shading+ Single reflective glass

230 mm + 40 mm cavity +115 mm brick with U value – 1.1 w/m²k

	RETV Wall conduction	RETV Window conduction	RETV Window Radiation	RETV (TOTAL)
 Case.4 Brick Cavity Wall Shading with overhang & Fins Single reflective glazing WWR: ~14% 	6.6	1.8	4.5	12.8

- $RETV = 12.8 W/m^{2}$
- Cavity in Brick reduces the conduction heat gain

Case V: Extra measure: AAC block wall + Shading of Windows+ Single reflective glass)

200 mm AAC block with U value – 0.7 w/m²k

	RETV Wall conduction	RETV Window conduction	RETV Window Radiation	RETV (TOTAL)
 Case.5 AAC Block Shading with overhang & Fins Single reflective glazing WWR:~14% 	4.7	1.8	4.5	10.9

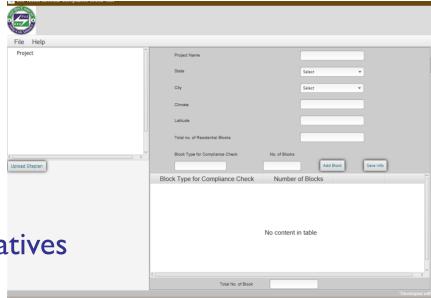
- RETV = 10.9 W/m^2
- AAC Walls further reduced thermal conduction from walls as compared to cavity brick wall

Key Envelope Parameters & it's impact on RETV

सत्यमेव जयते				Te Life, Consers
	RETV Wall conduction	RETV Window conduction	RETV Window Radiation	RETV (TOTAL)
Case. I Brick Wall No Shading Single clear glazing WWR: ~14%	10.1	1.8	9.6	21.5
Case.2 • Brick Wall • Shading with overhang & Fins • Single clear glazing • WWR: ~14%	10.1	1.8	6.7	18.6
Case.3 Brick Wall Shading with overhang & Fins Single reflective glazing WWR: ~14%	10.1	1.8	4.5	16.3
Case.4 Cavity Brick Wall Shading with overhang & Fins Single reflective glazing WWR: ~14%	6.6	1.8	4.5	12.8
Case.5 • AAC Block • Shading with overhang & Fins • Single reflective glazing • WWR: ~14%	4.7	1.8	4.5	10.9

Eco-Niwas Samhita Compliance Approach

Eco-Niwas Samhita (ENS) Compliance Tool


 Offline application tool along with it's user manual and tool demonstration video can be downloaded from BEE website

Inputs to software

- Architectural drawings (plans, sections and elevations)
- Construction material details

Results

- Code Compliance check
- RETV
- Comparison of different design alternatives

Eco-Niwas Samhita (ENS) Compliance Tool

Eco-Niwas Samhita: Compliance Check Report

1. ECBC-R Compliance Results

S/No.	REQUIREMENT	CALCULATED	CRITERIA	STATUS
Block-1				
1	WFRop	28.83	12.5	Compliant
2	VLT %	85.0	27.0	Compliant
3	Uroof	0.49	1.2	Compliant
4	RETV	4.54	15	Compliant

Eco-Niwas Samhita (ENS) Compliance Tool

Online application tool along with it's user manual and tool demonstration video is available on **ECONIWAS.COM** website

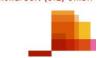
About Us +

Star Label +

ECO-NIWAS +

Information Center +

◆ Login Signup info@econiwas.com



THANK YOU

Akshay Kumar Gupta akshay.gupta@passivedesign.co.in

Supported by giz Gurla Zusan

Implemented by PWC