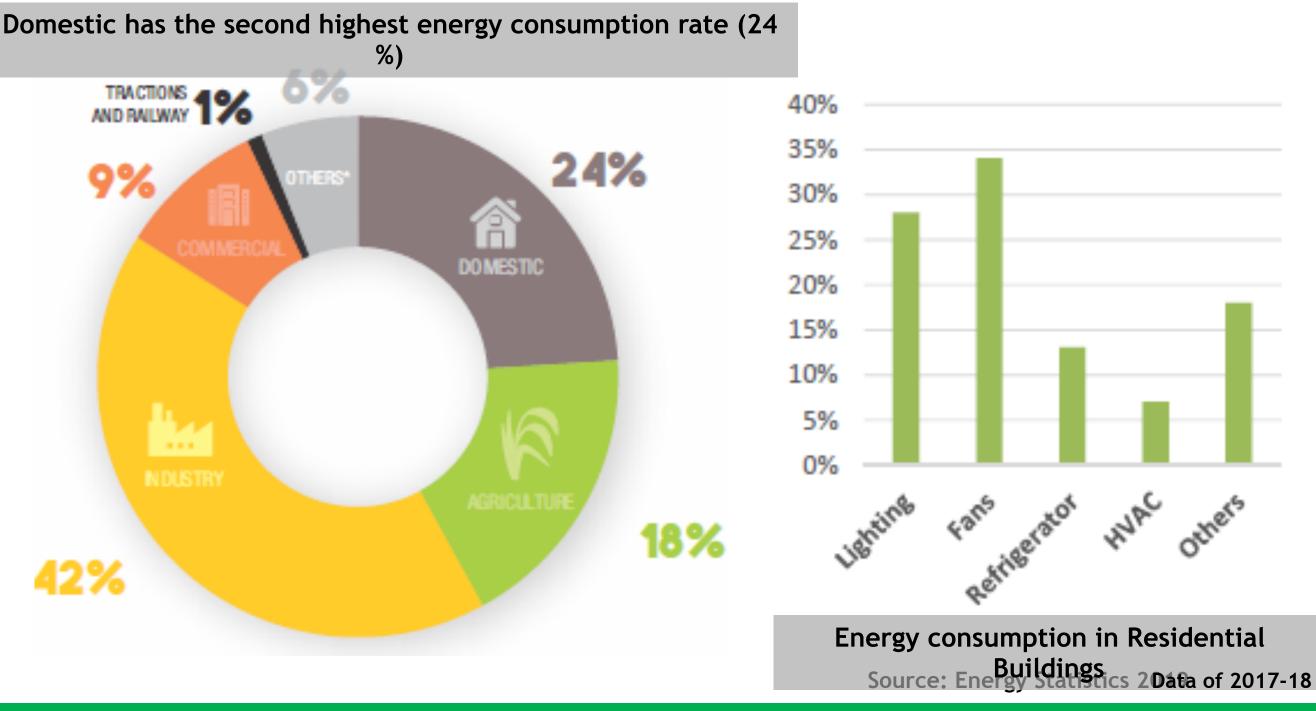
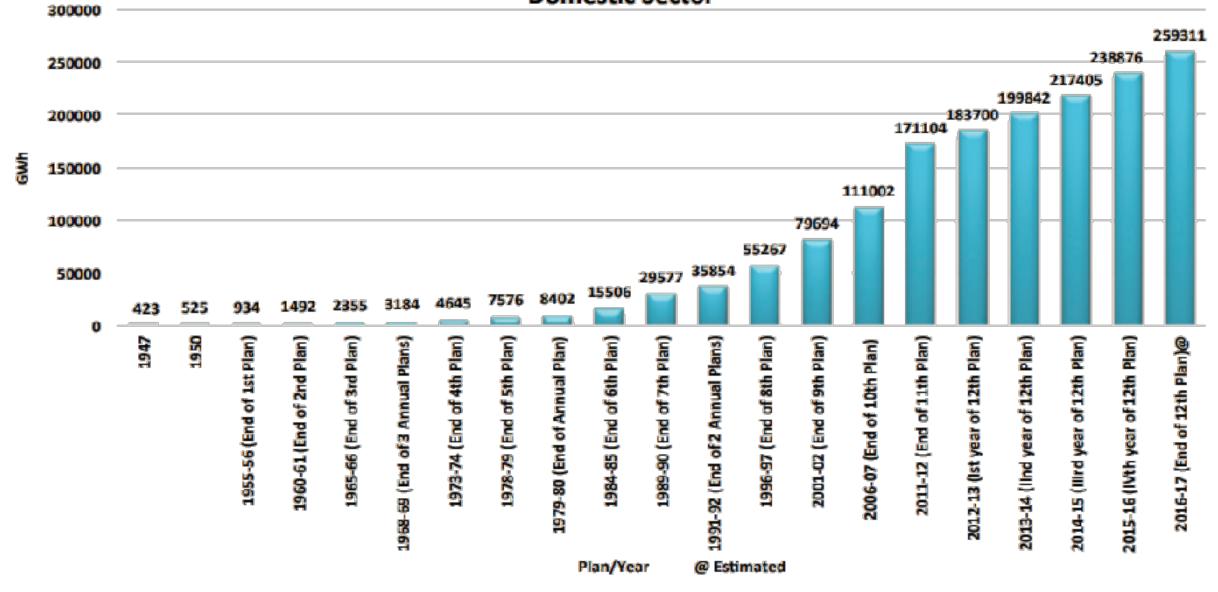

Eco Niwas Samhita - Karnataka Energy Conservation Building Code for Residential Building

Power Consumption



Source wise Energy Consumption



Energy Scenario In India

Plan wise Growth of Electricity Consumption in India Domestic Sector

Source: Electricity Sector in India

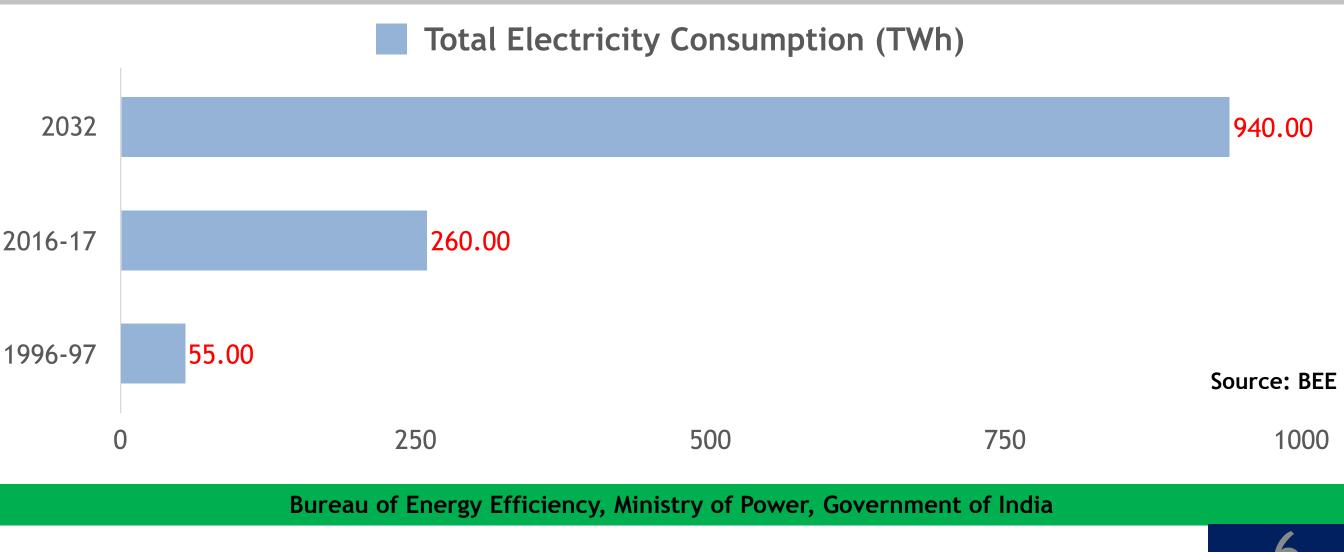
Introduction to Eco Niwas Samhita (ENS)

BEE (BUREAU OF ENERGY EFFICIENCY)

Government of India

GIZ (Deutsche Gesellschaft für Internationale Zusammenarbeit)

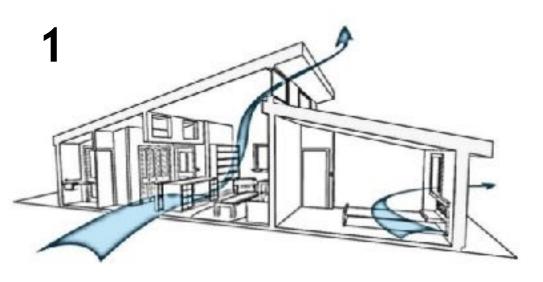
Government of Germany



Need for ENS

With respect to BUILT-UP AREA, approximately 3 Billion sq-m of Residential Built-up area will be added by 2030 with an exponential land use increase from 24% to 60% by 2047.

ENERGY DEMAND increase is as indicated below



Eco Niwas Samhita (ENS) - Part 1

Eco Niwas Samhita - Part 1 is designed to define minimum Building Envelope design standards to improve Energy Efficiency in Residential Buildings

2. For adequate day light (WWR- Window to Wall area Ratio)

 For Adequate natural ventilation potential
 (WFR - Window to Floor Area Ratio)

3. Limit heat gains / heat loss (U Value - Thermal Transmittance, RETV-Residential Envelope Transmittance Value)

Salient Features of ENS

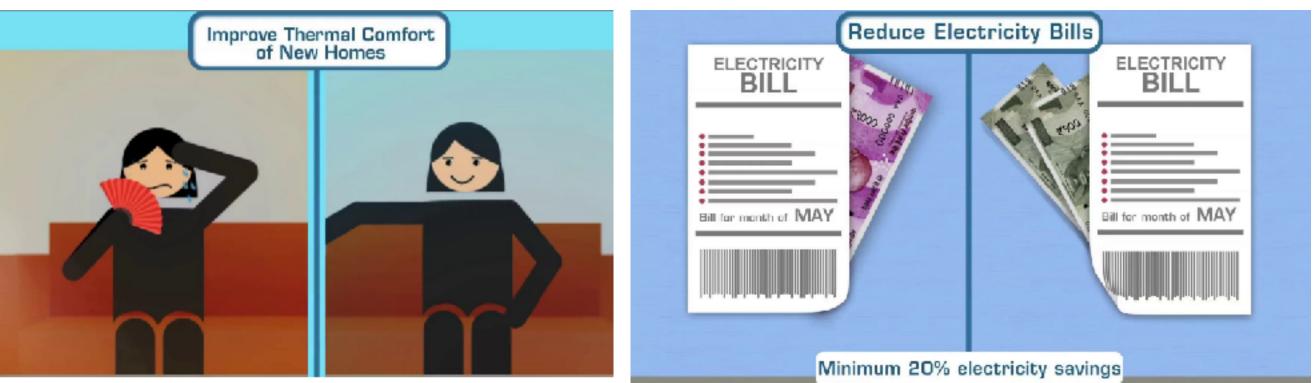
- Simple-to-apply format (Prescriptive Compliance Approach)
- Simple calculations based on inputs from the architectural design drawings of
- buildings.
- □ Will not require any simulation software.
- Code to be readily adopted in the building bye-laws.
- A compliance tool is also available on BEE website to aid in the calculations

and compliance check.

<u>http://</u> www.econiwas.com/

>

>



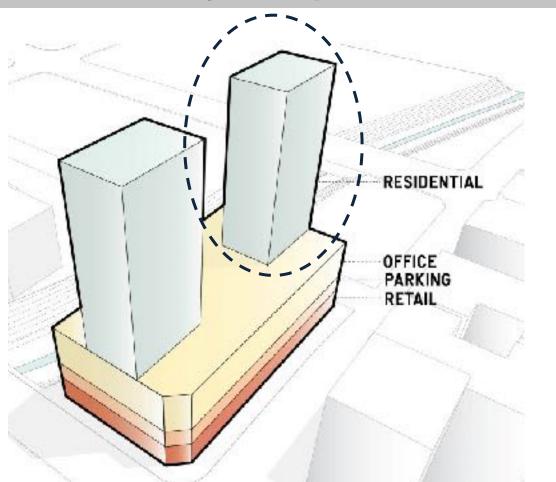
Benefits of ENS

Improve Thermal Comforts

Reduce Electricity Bills

Estimated Impact Of Implementing Eco Niwas Samhita

Minimum 20% energy saving as compared to a typical Building 125 billion KWH of electricity Saving 100 million tonnes of CO₂ equivalent abatement



Scope of ENS

The code is applicable to

(a)Residential Buildings with plot area \geq 500m²

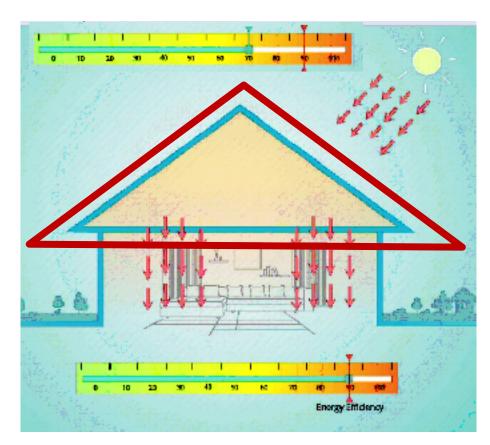
(b) Residential part of "Mixed Land-use building projects" built on plot area of \geq 500m².

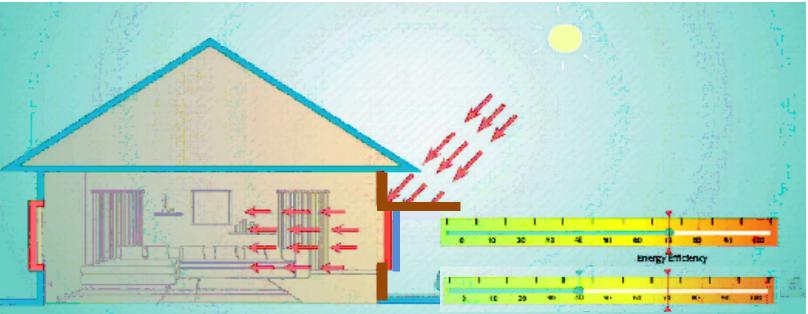
Excluded from the code

Dormitories

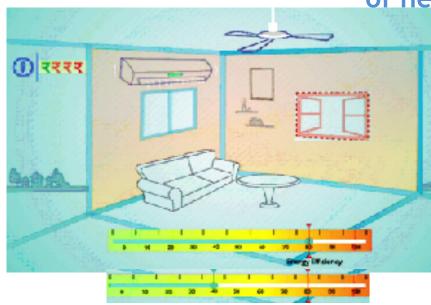
Hotels

Lodging Rooms





Conventional Building VS ENS Compliant Building

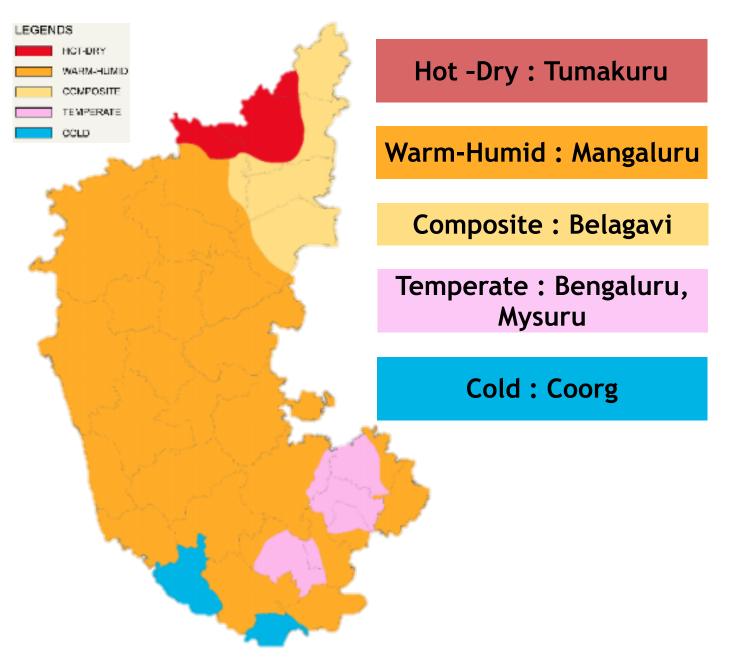


Non-insulated roof absorbs more heat and radiates inside the building

Proper Insulating materials can reduced heat gain

Conventional Brick wall, roof and single glazed windows, Proper shading, glazing, W&R ROOT insulation reduces impact of heat

ncreases in cross-ventilation reduces dependency on Air conditioners & coolers, thereby reduces electricity bills

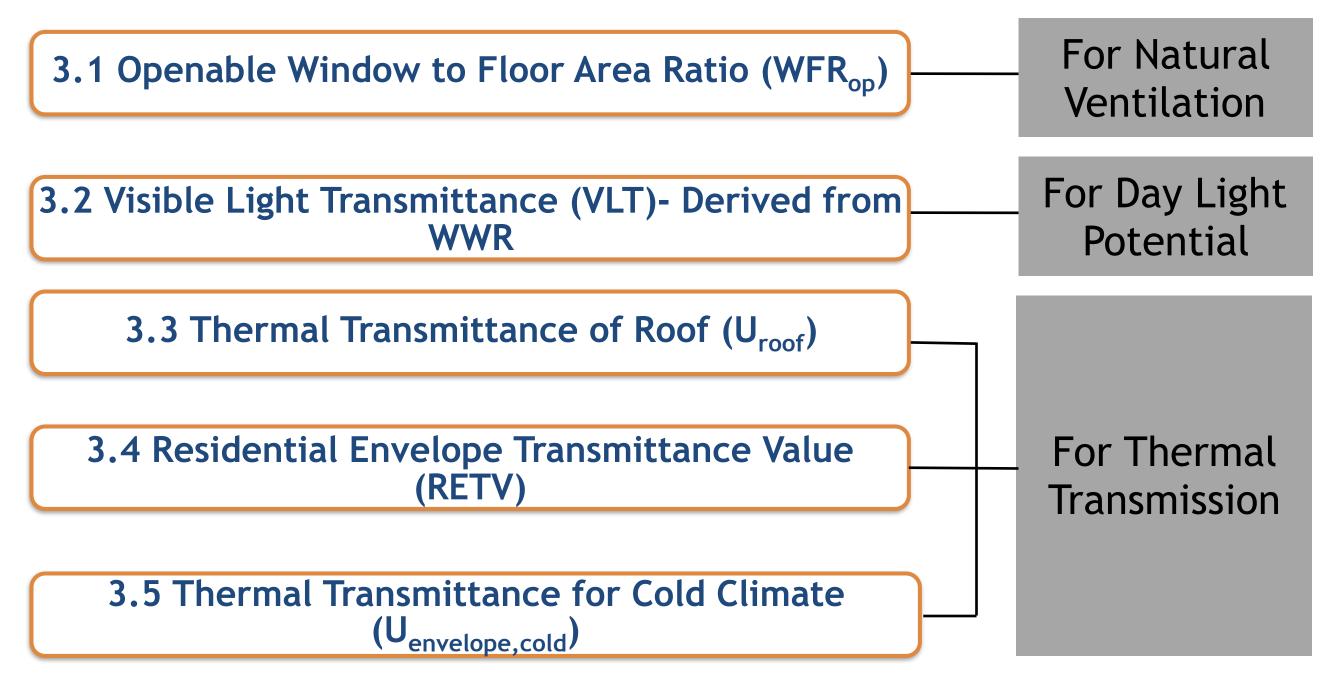


Karnataka ENS Code

SCOPE: The Karnataka ENS code is applicable to Residential Buildings with plot area \geq 500m² and Residential part of "Mixed Land-use building projects" built on plot area of \geq 500m². APPLICABILITY: The Karnataka ENS

code is applicable to all 5 climatic zones (Composite, Hot & Dry, Warm & Humid, Temperate & Cold), that all districts fall under. Latitude below 23.5 ° N

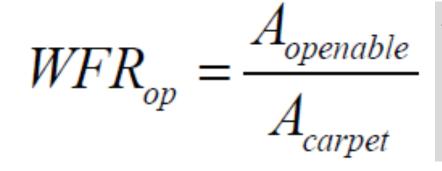
Climate Map -Karnataka



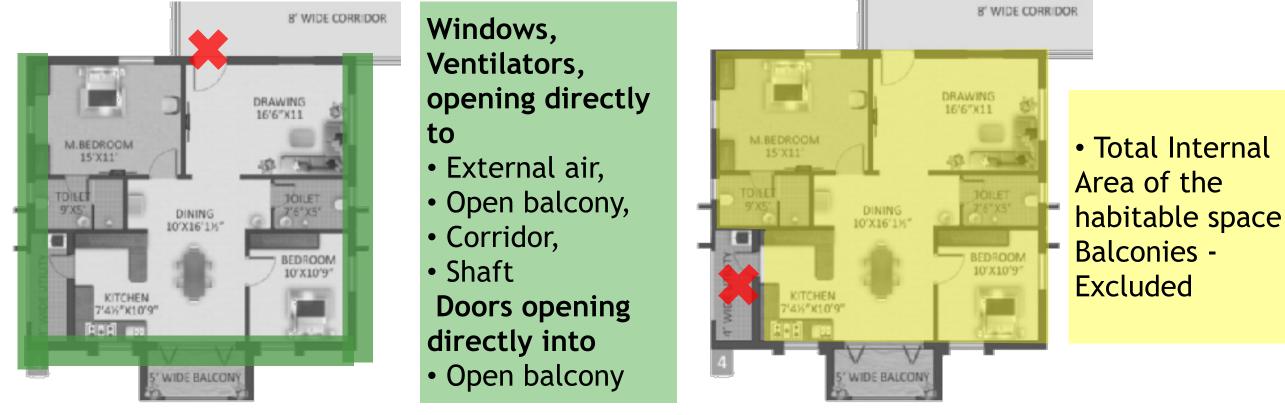
Performance Standards for Building Envelope

Source: Eco Niwas Samhita 2018

Bureau of Energy Efficiency, Ministry of Power, Government of India

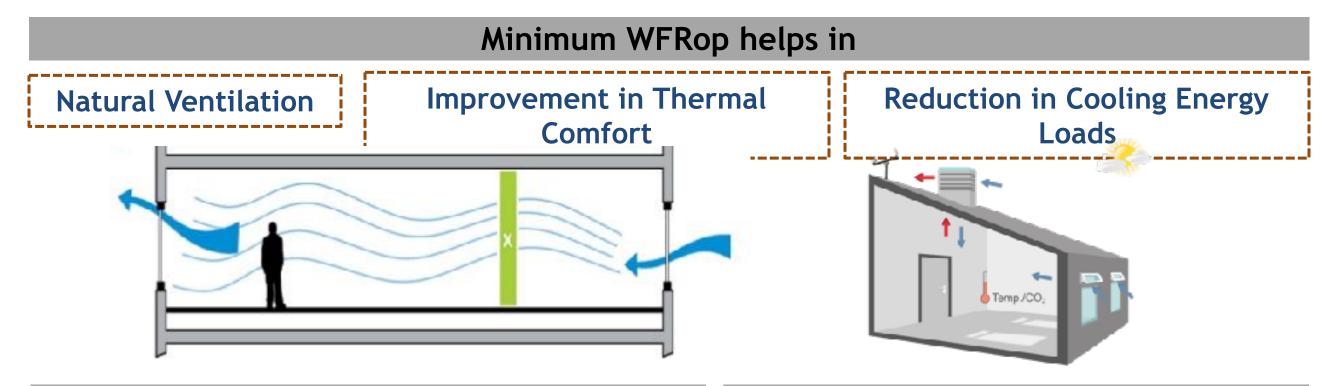

13




3.1 Openable Window to Floor Area Ratio (WFR_{op})

Window to floor area ratio is the ratio of Openable area to the carpet area of the dwelling Units.

Carpet Area



3.1 Openable Window to Floor Area Ratio (WFR_{op})

Minimum requirement of	f window-to-floor area Ratio	Openable Area Percentages		
Climate Zone	Minimum WFRop	(In case the exact Openable is not known		
Composite	12.50	Type of Window/Door/	Percentage Openable Area	
Hot-Dry	10.00	Ventilator		
Warm-Humid	16.66	Casement	90 %	
Temperate	12.50	Sliding (2 Panes)	50%	
Cold	8.33	Sliding (3 Panes)	67 %	

3.1 WFR_{op} - Example

Calculation of WFR for a dwelling unit situated in Rajkot

Wall	

200 mm AAC blocks with plaster on both
sides; U-value = 0.78 W/ m2.K
Roof
150 mm RCC with 40mm Polyurethane
foam (PU) insulation
Glass in windows
Single clear glass with; SHGC = 0.80,
VLT = 85%, and U-value = 5.80 W/m2.K

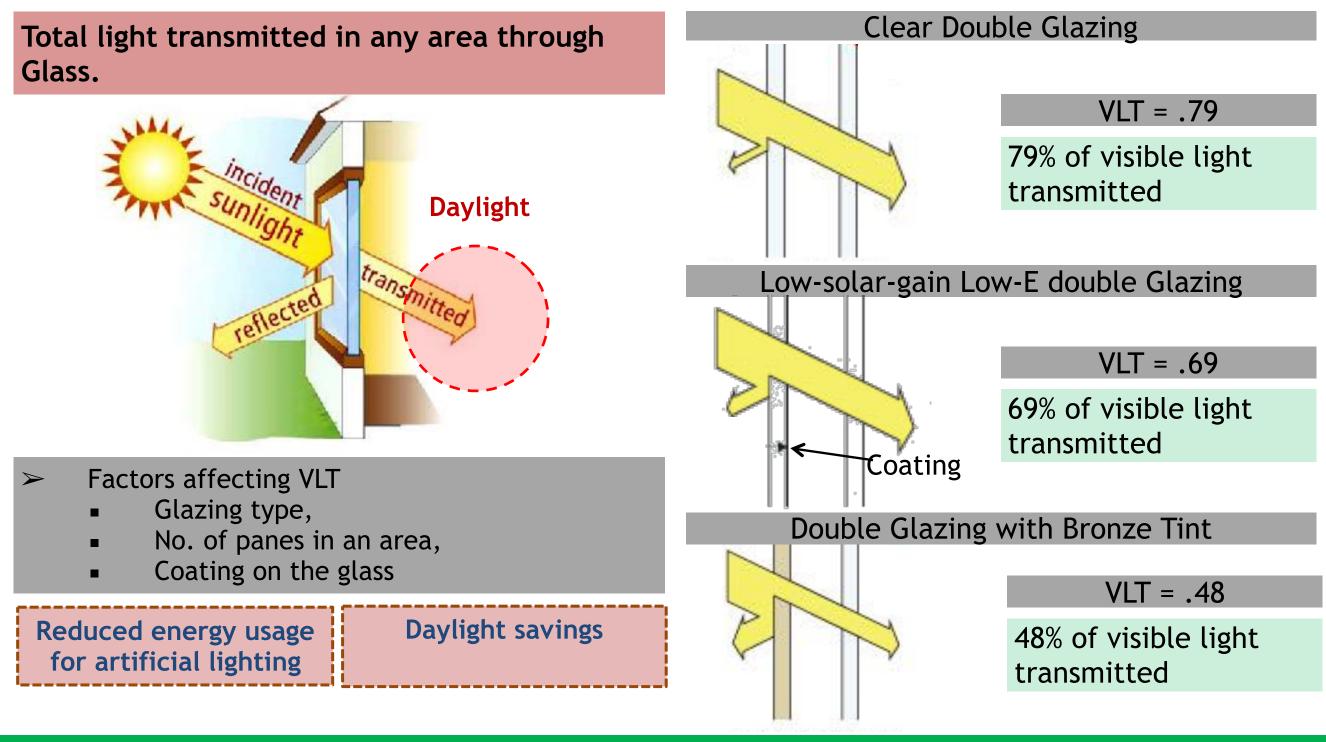
	Opening window/ door/ ventilator	Openin g width (m)	Openin g height (m)	Openin g area (m2)	Width of glass in Opening (m)	Height of glass in Opening (m)	Glass area in opening (m2)	Opaqu e area (m2)
	W1	1.20	1.60	1.92	1.20	0.53	0.64	1.28
on both	W2	0.80	1.30	1.04	0.80	0.43	0.35	0.69
	W3	0.80	1.60	1.28	0.80	1.60	1.28	0.00
thane	D	0.75	2.50	1.87	0.00	0.00	0.00	1.87
.80, /m2.K	V (2 nos)	0.65	0.40	0.26	0.65	0.40	0.26	0.00

3.1 WFR_{op} - Example

Opening name	Opening area (m2)	Openable area (m2)	Remarks		
W1	1.92	1.73			
W2	1.04	0.94			
W3	1.28	1.15	90% Openable		
D (opening into balcony)	1.87	1.69			
V(2nos)	0.52	0.47			
Openable area fo dwelling uni		5.97			
Carpet Area - A _{carpet =} 26.6 m ²					

$WFRop = A_{openable}$ $= A_{carpet}$	5.97 26.6					
- carpet						
= 2	2.44%					
Rajkot is in the compos	ite climate.					
As per Table, the minimum WFRop for this climate is 12.5%.						
Thus, this project comp requirement						

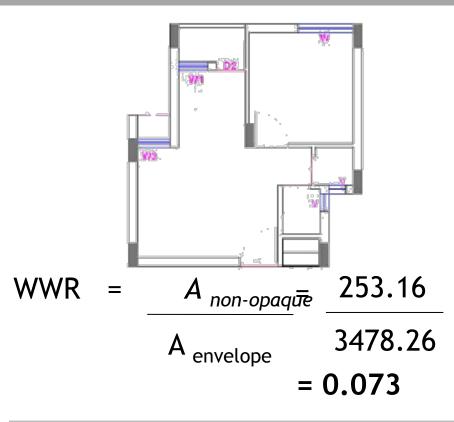
	WWR - Window to wall area ratio
A	Area (non-opaque) -
$WWR = \frac{A_{non-opaque}}{WWR}$	Total glass area in the opening .
$\gamma \gamma \gamma \gamma \Lambda = \Lambda$	Excluded - Opaque part of the total opening
A envelope	size.
	Area(Envelope) -
	Total envelope area of all facades.
* Note for WWR \leq 0.15 , VLT - 40%	Included - opaque and non-opaque
Relation between WW	'R and Visual Light Transmittance


Relation between WWR and Visual Light Transmittance

Window to Wall Ratio (WWR)	Minimum VLT
0-0.30	0.27
0.31-0.40	0.20
0.41-0.50	0.16
0.51-0.60	0.13
0.61-0.70	0.11

From where can we obtain the VLT of the Glass ?

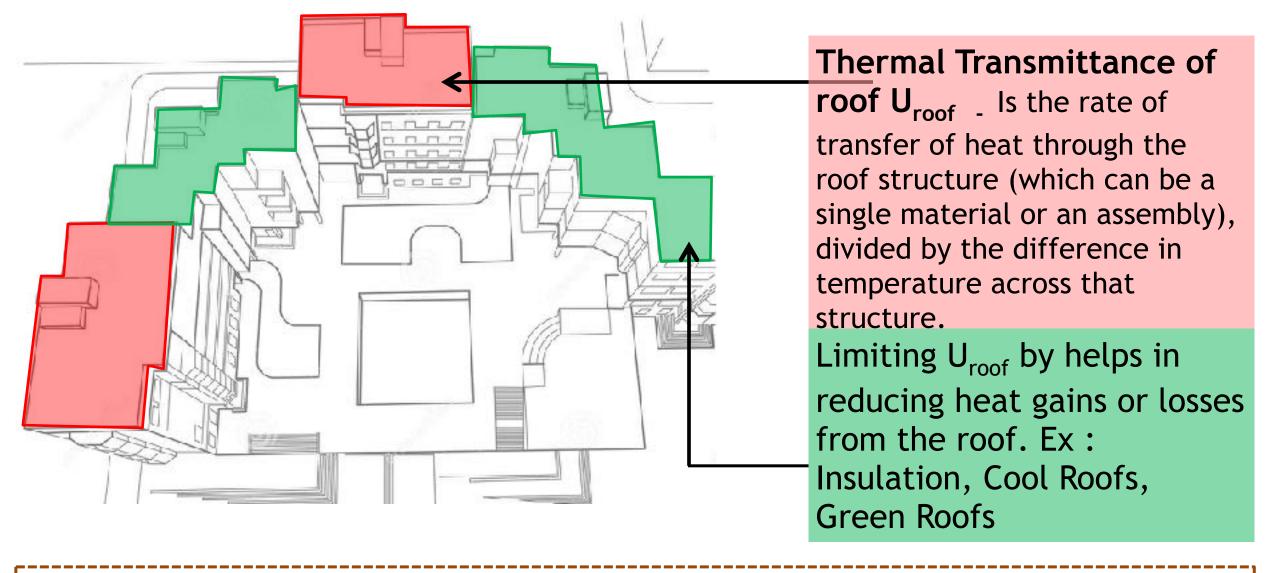
Colour / Performance	Thickness (mm)	Light Transmittance LT	Light Reflectance LR	Total Solar Radiant Heat Transmittance	Total Shading Coefficient	U Value (W/m²K)	R <mark>w Value</mark> (dB)
Clear	10	0.77	0.14	0.67	0.77	2.7	38
Clear	12	0.76	0.14	0.64	0.74	2.7	38
Clear	15	0.74	0.13	0.60	0.69	2.6	40
73/42	10	0.69	0.10	0.40	0.46	1.4	38
70/39	10	0.67	0.12	0.37	0.43	1.3	38
69/37	10	0.66	0.11	0.35	0.40	1.3	38
62/29	10	0.58	0.09	0.29	0.33	1.3	38
50/27	10	0.48	0.10	0.26	0.30	1.3	38
30/17	10	0.29	0.24	0.19	0.22	1.3	38


VLT of a Glass can be obtained from the Glass cut sheet available with any Glass manufacturer

Calculation of WWR for a dwelling unit situated in Rajkot

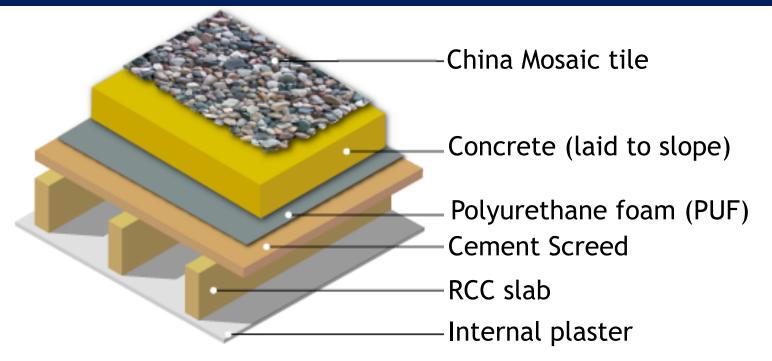
As per Table, for WWR of 0.073 (range 0-0.30), **the minimum required VLT is 27%.** The glass used in this **project has a VLT of 85%** (as mentioned).Thus, this project complies with this requirement.

Orientation	Opening name	Opening area (m2)	Non-opaque (glass) area in opening (m2)	No. of openings	Total opening area (m2)	Total non- opaque (glass) area (m2)
North	W1	1.92	0.64	56	107.52	35.62
North	W2	1.04	0.35	56	58.24	19.26
North	W3	1.28	1.28	56	71.68	71.68
North	D	1.88	0.00	56	105.00	0.00
South	W1	1.92	0.64	56	107.52	35.62
South	W2	1.04	0.35	56	58.24	19.26
South	W3	1.28	1.28	56	71.68	71.68
South	D	1.88	0.00	56	105.00	0.00
Total					684.88	253.16


Orientation	Total wall length (m), exposed to ambient	Total wall height (m), exposed to ambient	Envelope area (m²)
North	51.58	21.06	1086.27
South	51.58	21.06	1086.27
East	31.00	21.06	652.86
West	31.00	21.06	652.86
Envelope area(m ₂),excluding roof			3478.26

3.3 Thermal Transmittance - U roc

Thermal transmittance of roof shall comply with U_{roof} value - 1.2 W/ m².k

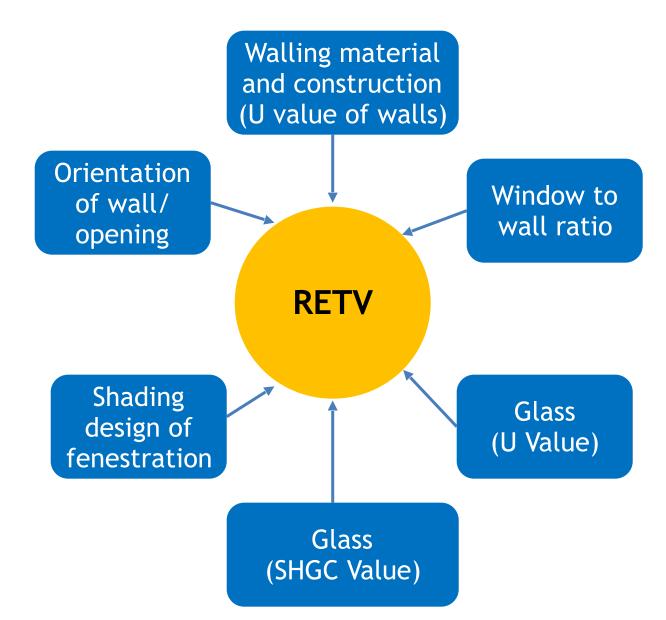


3.3 Thermal Transmittance - U roof

Total thermal Resistance - $R_t = R_{si} + R_{se} + R1 + R2 + R3....$ = 0.17+0.04+1.917 = 2.127 m².K/ W

Total Thermal Transmittance (Roof)-U _{roof} =1/RT = 0.47 W/m².K

Material Layer	Thickness,(t)	Thermal Conductivity- k (W/m.K)	Thermal Resistance , R=t/k(m².K/w)
China mosaic tile	0.007	1.500	0.005
Concrete (laid to slope)	0.050	1.740	0.029
Polyurethane foam (PUF)	0.040	0.023	1.739
Cement screed	0.020	0.720	0.028
RCC slab	0.150	1.580	0.095
Internal plaster	0.015	0.720	0.021
Sum of all material thermal resistance			1.917



3.4 Residential Envelope Transmittance Value (RETV)

Solar Radiation through nonopaque surfaces Conduction through opaque surfaces Conduction through nonopaque surfaces

3.4 Residential Envelope Transmittance Value (RETV)

The net heat gain rate through building Envelope

$$RETV = \frac{1}{A_{envelope}} \times \left\{ \begin{aligned} &\left\{ a \times \sum_{i=1}^{n} \left(A_{opaque_{i}} \times U_{opaque_{i}} \times \omega_{i} \right) \right\} \\ &+ \left\{ b \times \sum_{i=1}^{n} \left(A_{non-opaque_{i}} \times U_{non-opaque_{i}} \times \omega_{i} \right) \right\} \\ &+ \left\{ c \times \sum_{i=1}^{n} \left(A_{non-opaque_{i}} \times SHGC_{eq_{i}} \times \omega_{i} \right) \right\} \end{aligned}$$

RETV accounts for -→ heat conduction through opaque and nonopaque building envelope components.

Solar radiation through non-opaque building envelope components

SHGC -Solar heat gain coefficient

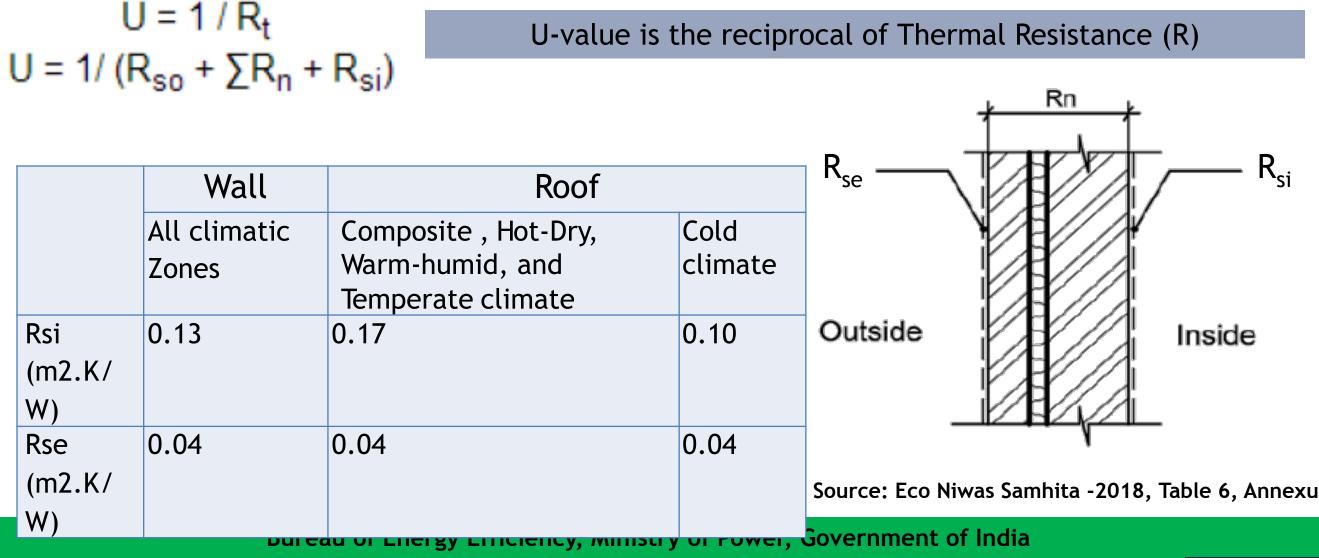
A_{opaque}, A_{non-opaque} - area of opaque and non-opaque areas in the building envelope

W_i - Orientation Factor

U_{opaque}, U_{non-opaque} - Thermal transmittance of opaque and non-opaque building envelope components.

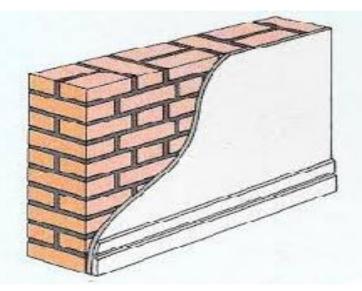
a,b,c - Coefficients for different climatic zones

A_{envelope} - Envelope area of dwelling units, except roof area.



3.4 U- Value - Thermal Transmittance - Wall

U-value - Rate of transfer of heat through a structure (which can be a single material or an assembly), divided by the difference in temperature across that structure. (W/m²K)

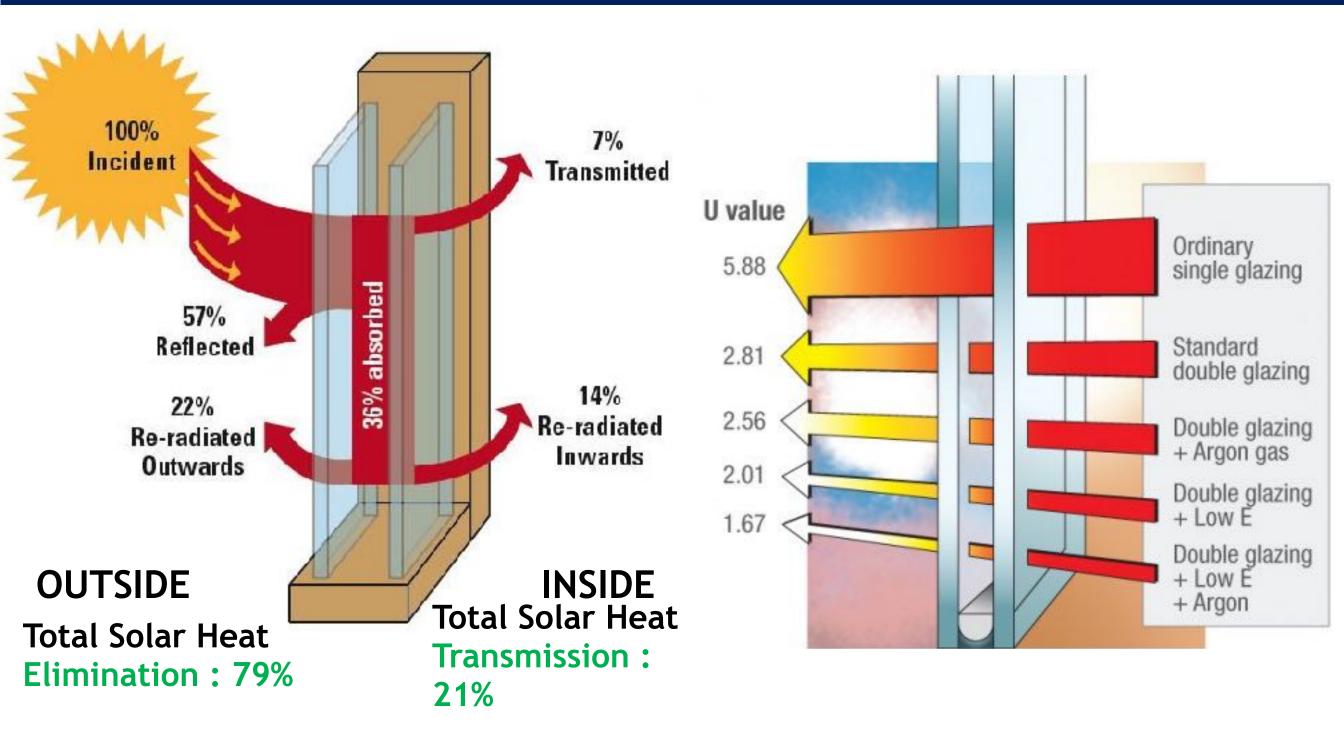

3.4 Types of wall and their U-value

150 mm RCC (No plaster) U Value - 3.77 W/m²K

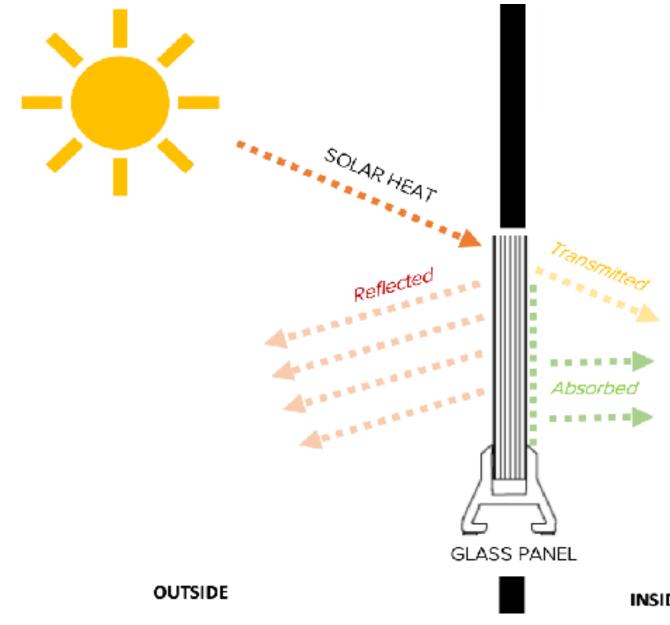
200 mm Solid Concrete Block with 15 mm plaster on both sides U Value- 2.8 W/m²K

230 mm Brick with 15 mm plaster on both sides U Value 1.72 - 2.24 W/m²K

200 mm Autoclaved Aerated Concrete (AAC) with 15 mm plaster on both side **U Value- 0.77 W/m**²K


300 mm Autoclaved Aerated Concrete (AAC) with 15 mm plaster on both sides U Value - 0.54 W/ m²K

3.4 U- Value - Thermal Transmittance - Non-Opaque



3.4 Solar Heat Gain Coefficient (SHGC) - Non-Opaque

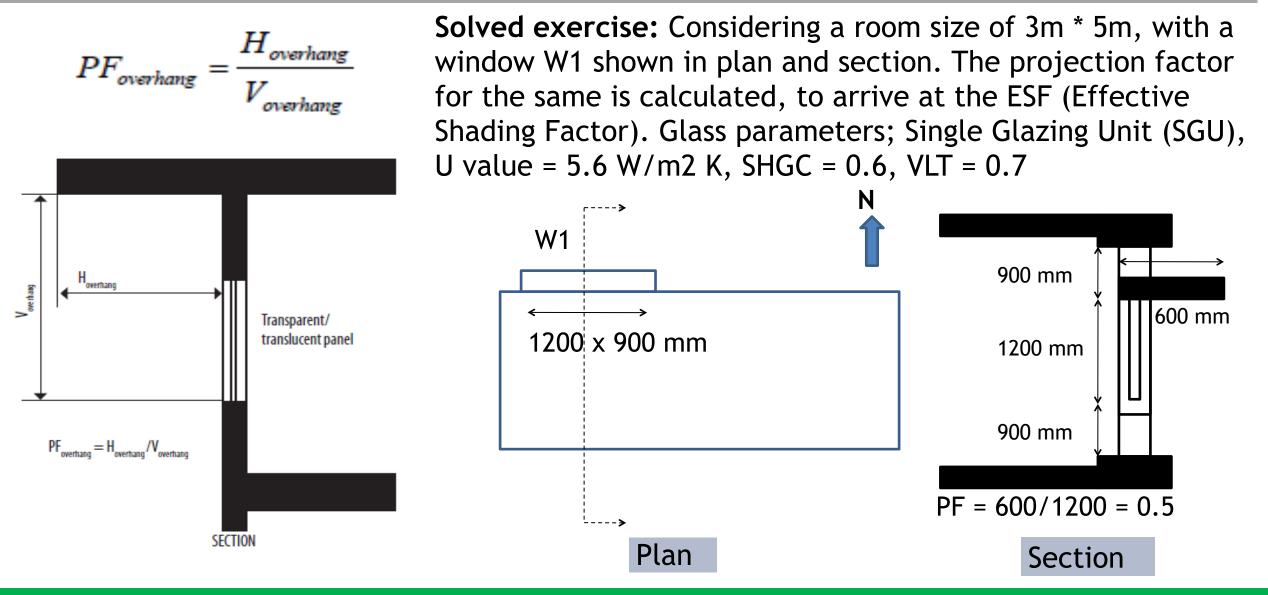
Solar heat gain coefficient is the measure of solar heat -

- Absorbed
- Transmitted

Lower SHGC \propto lesser Heat Transfer

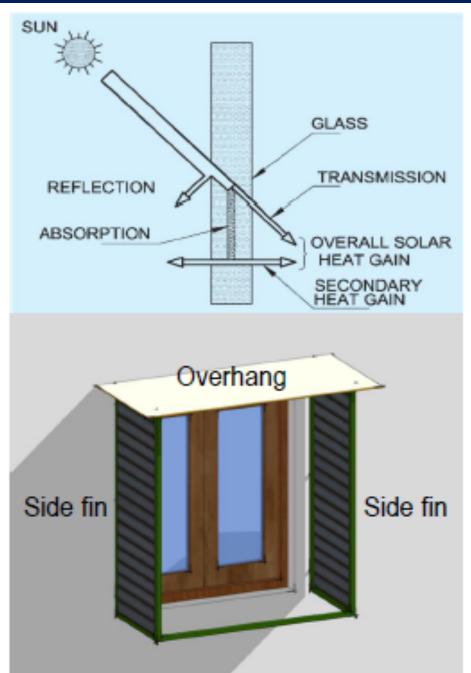
Solar Radiation is subsequently released inward through conduction, convection and radiation.

INSIDE



3.4 Projection factor (PF)

Projection Factor (PF) is the ratio of the horizontal depth of the external shading projection (H overhang) to the bottom of the farthest point of the external shading projection (V overhang), in consistent units.



3.4 Equivalent SHGC

SHGC _{unshaded} gain	= Transmission + Secondary heat
5	Incident Solar radiation

External Shading (overhang, side fins) cut the solar radiation

External Shading Factor (ESF_{total} \leq 1) accounts the impact of shading.

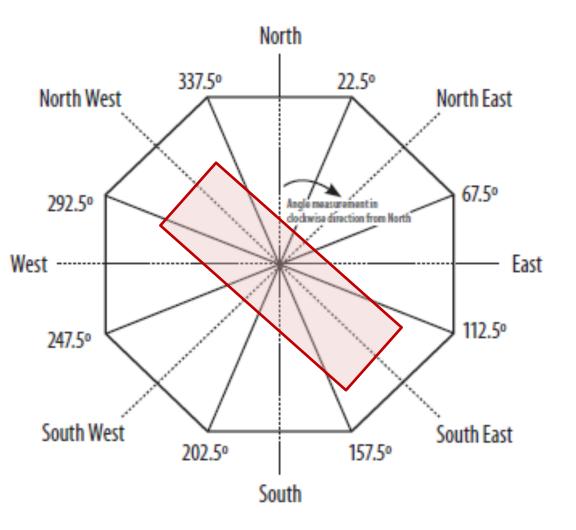
SHGC_{eq} = SHGC _{unshaded} X ESF_{total}

3.4 Equivalent SHGC

	External Shading Factor for Overhang (ESF _{everhang}) for LAT < 23.5°N							
Orientation PF _{overbang}	North (337.6°–22.5°)	North-east (22.6°–67.5°)	East (67.6°–112.5°)	South-east (112.6°–157.5°)	South (157.6°–202.5°)	South-west (202.6°–247.5°)	West (247.6°–292.5°)	North-west (292.6°-337.5°)
<0.10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.10-0.19	0.931	0.924	0.922	0.910	0.896	0.910	0.922	0.924
0.20-0.29	0.888	0.864	0.855	0.834	0.816	0.834	0.854	0.864
0.30-0.39	0.860	0.818	0.797	0.771	0.754	0.771	0.796	0.818
0.40-0.49	0.838	0.782	0.747	0.721	0.708	0.720	0.746	0.782
0.50-0.59	0.820	0.755	0.705	0.682	0.675	0.681	0.705	0.755
0.60-0.69	0.806	0.734	0.670	0.651	0.653	0.651	0.670	0.734
0.70-0.79	0.793	0.718	0.641	0.628	0.638	0.627	0.640	0.717
0.80-0.89	0.783	0.706	0.616	0.610	0.628	0.609	0.615	0.705
0.90-0.99	0.775	0.696	0.596	0.596	0.621	0.596	0.595	0.695
≥l	0.768	0.688	0.579	0.585	0.616	0.585	0.578	0.688

 $SHGC_{eq} = SHGC_{unshaded} \times ESF_{total}$ = 0.6 * 0.820= 0.492

Source: Eco Niwas Samhita -2018, Table 11, Annexure



3.4 Orientation factor (ω)

The orientation factor (ω) is a measure of the amount of direct and diffused solar radiation that is received on the vertical surface in a specific orientation

	Orientation factor (ω)	
Orientation	Latitudes <23.5°N	
North (337.6°–22.5°)	0.659	
North-east (22.6°-67.5°)	0.906	
East (67.6°–112.5°)	1.155	
South-east (112.6°–157.5°)	1.125	
South (157.6°–202.5°)	0.966	
South-west (202.6°-247.5°)	1.124	
West (247.6°-292.5°)	1.156	
North-west (292.6°-337.5°)	0.908	

The building is oriented at 45 $^\circ$ N, then the corresponding Orientation factor = 0.906

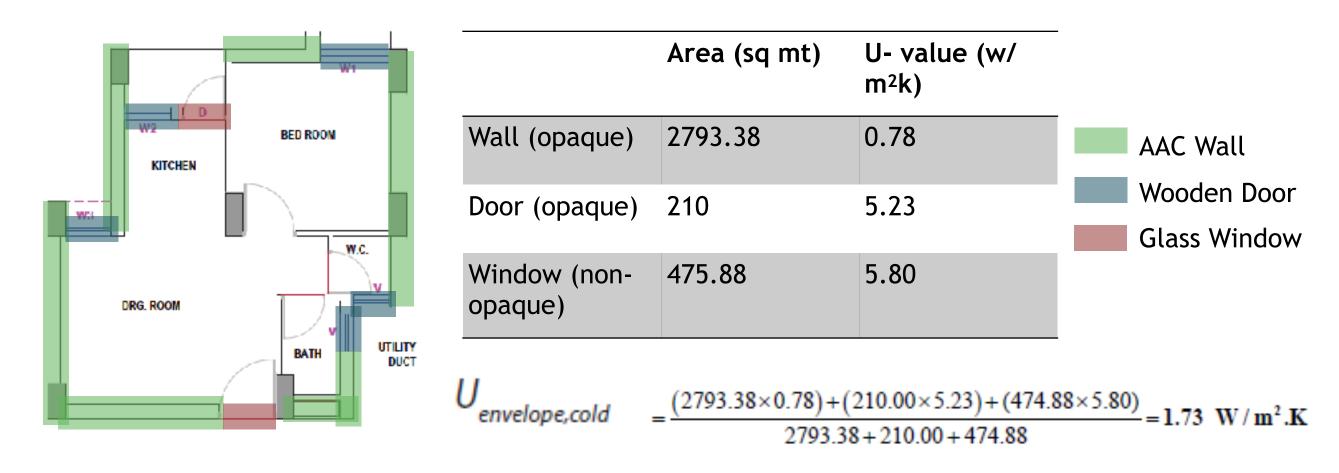
3.4 Residential Envelope Transmittance Value (RETV)

TABLE 3 Coefficients (a, b, and c) for RETV formula

Climate zone	а	b	C			
Composite	6.06	1.85	68.99			
Hot-Dry	6.06	1.85	68.99			
Warm-Humid	5.15	1.31	65.21			
Temperate	3.38	0.37	63.69			
Cold	Not applicable	Not applicable (Refer Section 3.5)				

RETV for the building envelope (except roof) for four climate zones, namely, Composite Climate, Hot-Dry Climate, Warm-Humid Climate and Temperate

Climate shall comply with the maximum RETV of 15 W/m²



3.5 Thermal Transmittance - Wall (Except roof) for Cold Climate (U envelope, cold)

$$\mathbf{U}_{envelope,cold} = \frac{1}{A_{envelope}} \left[\sum_{i=1}^{n} (U_i \times A_i) \right]$$

>The thermal transmittance of the building envelope (except roof) for cold climate shall comply with the maximum of $1.8 \text{ w/M}^2\text{K}$

Case 1	External wall	Roof Construction	Glazing	Window to wall Ratio
	230mm thick Solid Burnt Clay Brick	150 mm thick RCC slab + 50mm thick EPS	50 mm Steel Frame; Single glazed Unit U Value = 5.7 W/m2k, SHGC = 0.56, VLT=0.51	22.55%
		RETV - 14.9 2	2 W/m ² .K	

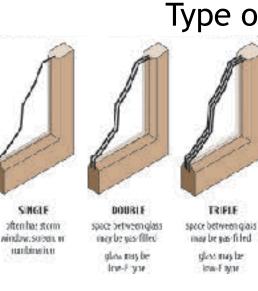
Case 2		External wall	Roof Construction	Glazing	Window to wall Ratio
	SINGLE GLAZED WINDOW	200mm thick AAC Block wall	150 mm thick RCC slab + 50mm thick EPS	50 mm Steel Frame; Single glazed Unit U Value = 5.7 W/m2k, SHGC = 0.56, VLT=0.51	22.55%
			RETV - 9.71	W/m².K	

Case 3		External wall	Roof Construction	Glazing	Window to wall Ratio
	DOUBLE GLAIED WINDOW	200mm thick AAC Block wall	150 mm thick RCC slab + 50mm thick EPS	Double glazed Unit - Asahi LC 54/37 U Value = 1.64 W/m2k, SHGC = 0.36, VLT=0.52	22.55%
			RETV - 6.62	W/m ² .K	

Case 4		External wall	Roof Construction	Glazing	Window to wall Ratio
		200mm thick AAC wall, 50 mm EPS, high SRI paint	150 mm thick RCC slab + 50mm thick EPS	Double glazed Unit - Asahi LC 54/37	22.55%
	DOUBLE GLAIED WINDOW GLASS AIR SPACE SPLICER DESICCANT STAL			U Value = 1.64 W/m2k, SHGC = 0.36, VLT=0.52	
			RETV - 5.13	W/m².K	

Building Design Flexibility by ENS

Material wall Assembly


Design of Window Panel

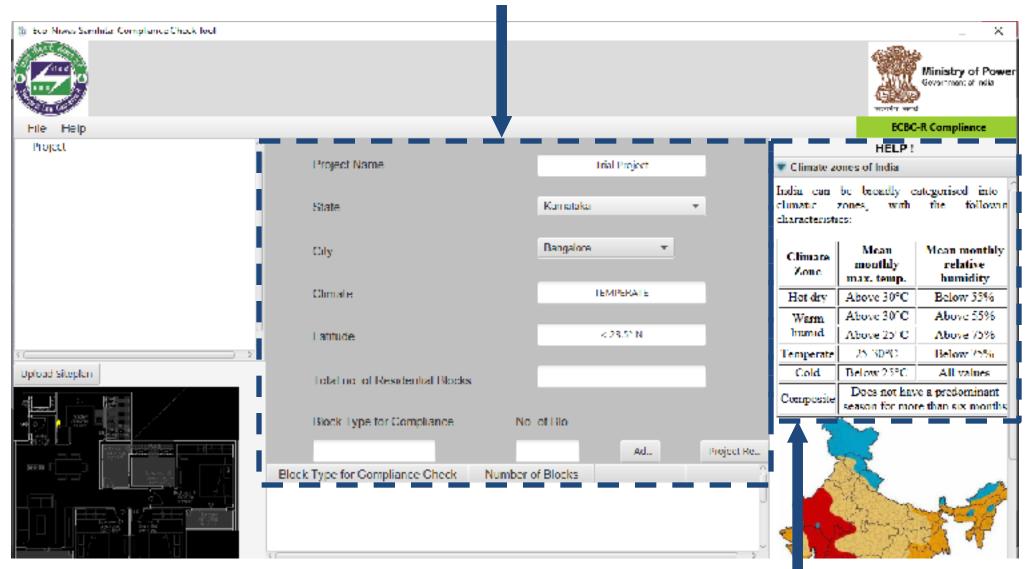

Shading of external Windows

Type of glazing

Eco-Niwas Samhita Compliance Approach Tool

Java based ENS compliance check tool has been developed to check compliance for residential project.

3 box-News Senh ta Compliance Check Teol		Represented to salive R. House Conference			
9				Ninks State and	try of Powe heater hos
Fie Hop				ECBC-R Cor	mpliance
Residential project-1 Check Compliance (Residential project-1)				HELPI	
	Project Name	Residential project 1	T Climate as	nes of India	
Building A Creck Compliance (Building A)	State	Waharachtra 💌	India can be thanktensites	readly categorised into 5 climatic zones, with	the followin
Window			Icheur Terr	Mean monthly max, temp. [Mean monthly role	de a De canal de las
vestilator			Line av Anno	Above 30°C Below 55	
Deer	ay	Mumbai 🔹		Almos WC Many V	
rae"			Wass bund	Above 25°C Above 75	
	Climate	WARM & HUMID	Traprair	2:-37°C Bday 7:	
			Cold	Beaw 29°C All vite	
				Bass not have a predominant section for more that	
	Labbade	< 23.5° N			
Uplead Siteplan	T char no. of Residential Hocks Block Type for Compliance Clock	2 No. of Biocha Ade Block	Troject Relocate		
	Block Type for Compliance Check	Number of Blocks		1 5 00-	2.2
	Building A	1 1		233	R.
					·
			3		
	Total	Na. of Olock 2	 Builting b 	ook type for compliance sheek	

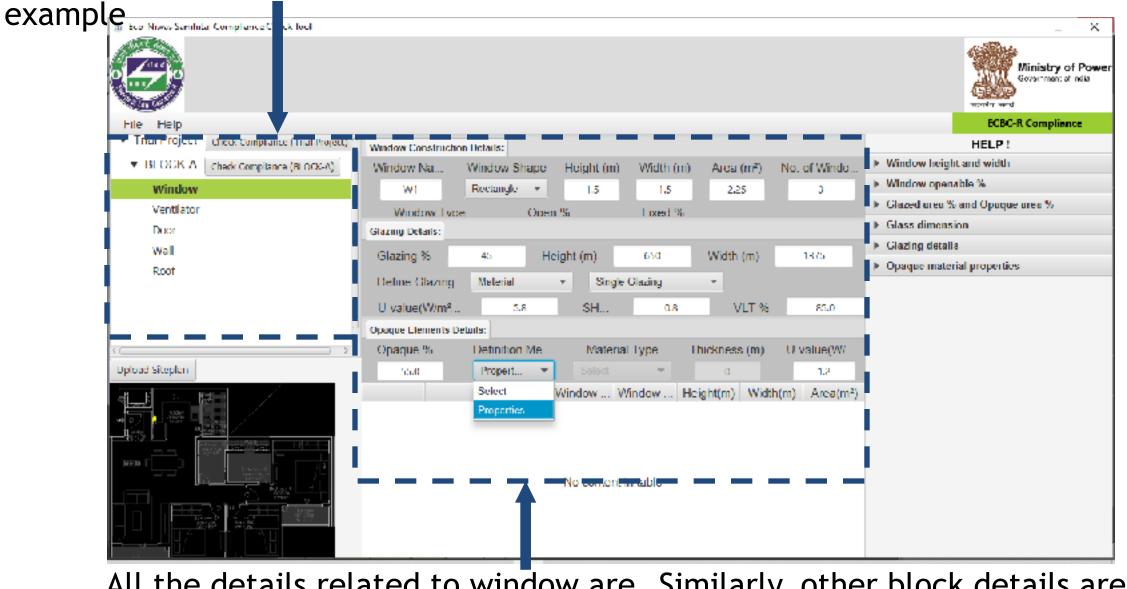

Available on Bureau of Energy Efficiency's website for download. Link - https://beeindia.gov.in/content/ecbc-residential

Project related details are entered in the tool for compliance check

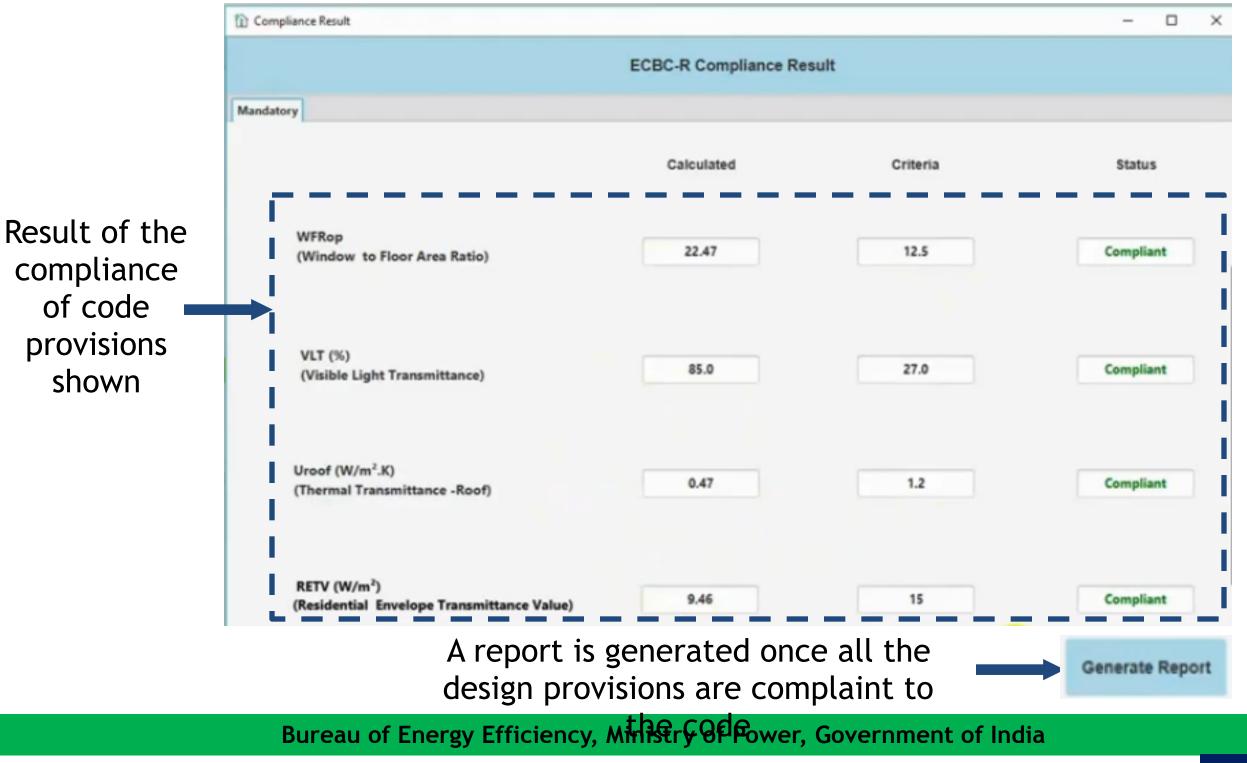
Climate data after entering the project location details

Details of various building components will be added for Compliance check- Architectural drawings(plans, sections and elevations)

Eco Nrwas Samhita: Compliance Clinick lool							_ X
							Ministry of Power Government of Index
File Help							ECBC-R Compliance
Than Project Compliance (That Project)	Dwelling Unit I	Details :					HELP !
 BLOCK A Check Compliance (BLOCK-A) 	Differing office	Detailing .					Dwelling unit and type
Window	Type of Dwellin	ig Unit	Not of Units	Carpet Area/I	DU (m²)		► Carpet area
Ventilator						Add	
Door		-	_	_			
Well	S.No. I	ype of DU	No. of Units	Carpet Area/	Lotal Area (m ²)	î	
	1	2 BHK	56	65.0	3540.0	Î	
Rouf							
Upload Siteplan							
	_		_	_			
						2	
Details	of th	o hla	ncks a	ro cub	mitto	a 📕	
Details			icns a			u l	


and can be seen here

Construction material details are entered in the tool. Window details are shown here for


All the details related to window are Similarly, other block details are added in submitted for the compliance the table for checking different design

Implemented by

Thank You

Knowledge Partner

